陶哲轩实分析(上)10.3及习题-Analysis I 10.3

单调函数和导数的关系,容易理解。

Exercise 10.3.1

Since f f f is differentiable at x 0 x_0 x0, we have
f ′ ( x 0 ) = lim ⁡ x → x 0 ; x ∈ X − { x 0 } ⁡ f ( x ) − f ( x 0 ) x − x 0 f' (x_0 )=\lim_{x→x_0;x∈X-\{x_0 \}}⁡\frac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0;xX{x0}limxx0f(x)f(x0)
If f f f is monotone increasing, then we have
f ( x ) ≤ f ( x 0 ) , x < x 0 , f ( x ) ≥ f ( x 0 ) , x > x 0 f(x)≤f(x_0 ),x<x_0,\quad f(x)≥f(x_0 ),x>x_0 f(x)f(x0),x<x0,f(x)f(x0),x>x0
Thus in both x < x 0 x<x_0 x<x0 and x > x 0 x>x_0 x>x0 we shall have
f ( x ) − f ( x 0 ) x − x 0 ≥ 0 ⇒ f ′ ( x 0 ) = lim ⁡ x → x 0 ; x ∈ X − { x 0 } ⁡ f ( x ) − f ( x 0 ) x − x 0 ≥ 0 \frac{f(x)-f(x_0)}{x-x_0}≥0 ⇒ f' (x_0 )=\lim_{x→x_0;x∈X-\{x_0 \} }⁡\frac{f(x)-f(x_0)}{x-x_0}≥0 xx0f(x)f(x0)0f(x0)=xx0;xX{x0}limxx0f(x)f(x0)0
The case when f f f is monotone decreasing can be similarly proved.

Exercise 10.3.2

Define
f ( x ) = { x , x ∈ ( − 1 , 0 ] 2 x , x ∈ ( 0 , 1 ) f(x)=\begin{cases}x,&x∈(-1,0]\\2x,&x∈(0,1) \end{cases} f(x)={x,2x,x(1,0]x(0,1)
This doesn’t contradict Proposition 10.3.1 since Proposition 10.3.1 requires f f f to be differentiable at the point (0 in this case).

Exercise 10.3.3

Define
f ( x ) = x 3 , x ∈ ( − 1 , 1 ) f(x)=x^3,\quad x∈(-1,1) f(x)=x3,x(1,1)
Then f f f is differentiable at 0, f ′ ( 0 ) = 0 f' (0)=0 f(0)=0, but f f f is monotone increasing.
This doesn’t contradict Proposition 10.3.1 since f ′ > 0 f'>0 f>0 is a sufficient but not necessary condition for f f f to be strictly monotone increasing.

Exercise 10.3.4

For any x ≠ y ∈ [ a , b ] x≠y∈[a,b] x=y[a,b], without loss of generality we can suppose x < y x<y x<y, then f ∣ [ x , y ] f|_{[x,y]} f[x,y] is continuous and differentiable on [ x , y ] [x,y] [x,y], thus by mean value theorem, we can find a c ∈ ( x , y ) ⊂ ( a , b ) c∈(x,y)⊂(a,b) c(x,y)(a,b) such that
f ′ ( c ) = f ( y ) − f ( x ) y − x = f ( x ) − f ( y ) x − y f' (c)=\frac{f(y)-f(x)}{y-x}=\frac{f(x)-f(y)}{x-y} f(c)=yxf(y)f(x)=xyf(x)f(y)
If f ′ ( x ) > 0 , ∀ x ∈ [ a , b ] f' (x)>0,∀x∈[a,b] f(x)>0,x[a,b], then f ′ ( c ) > 0 f' (c)>0 f(c)>0 and f ( x ) < f ( y ) f(x)<f(y) f(x)<f(y), so f f f is strictly monotone increasing.
If f ′ ( x ) < 0 , ∀ x ∈ [ a , b ] f' (x)<0,∀x∈[a,b] f(x)<0,x[a,b], then f ′ ( c ) < 0 f' (c)<0 f(c)<0 and f ( x ) > f ( y ) f(x)>f(y) f(x)>f(y), so f f f is strictly monotone decreasing.
If f ′ ( x ) = 0 , ∀ x ∈ [ a , b ] f' (x)=0,∀x∈[a,b] f(x)=0,x[a,b], then f ′ ( c ) = 0 f' (c)=0 f(c)=0 and f ( x ) = f ( y ) f(x)=f(y) f(x)=f(y), so f f f is a constant function.

Exercise 10.3.5

Define
f ( x ) = { x + 1 , x ∈ ( − 1 , 0 ) x − 1 , x ∈ ( 0 , 1 ) f(x)=\begin{cases}x+1,&x∈(-1,0)\\x-1,&x∈(0,1)\end{cases} f(x)={x+1,x1,x(1,0)x(0,1)
Then if X = ( − 1 , 0 ) ∪ ( 0 , 1 ) X=(-1,0)∪(0,1) X=(1,0)(0,1), then f f f is differentiable on X X X and f ′ ( x ) = 1 > 0 , ∀ x ∈ X f' (x)=1>0,∀x∈X f(x)=1>0,xX, but we have f ( 1 / 2 ) = − 1 / 2 < f ( − 1 / 2 ) = 1 / 2 f(1/2)=-1/2<f(-1/2)=1/2 f(1/2)=1/2<f(1/2)=1/2, thus f f f in not strictly monotone increasing.
The key condition which is different from Proposition 10.3.3 is that X X X is allowed to be a disconnected set.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值