slam14讲-pa4-图像去畸变问题记录

slam14讲-pa4-图像去畸变

前言

在做一道图像去畸变的习题时,发现题目有些问题,修改后解决了问题

原题

这里x,y应该为去畸变前图片相机坐标,x_undistorted = x…,y_undistortted =y…为去畸变之后的相机坐标,且均为归一化坐标。

slam14讲相关解释

下面开始做题,主要注意从图像中直接获取的是像素坐标,要先将像素坐标转化为相机坐标,(区分像素坐标,物理成像坐标,相机坐标,世界坐标)利用给定多项式矫正相机坐标,再转化为像素坐标。

具体实现过程

/*
 author:xlyhhh
*/
#include <opencv2/opencv.hpp>
#include <string>
#include <math.h>
using namespace std;

string image_file = "../test.png";   // 请确保路径正确

int main(int argc, char **argv) {

    // 本程序需要你自己实现去畸变部分的代码。尽管我们可以调用OpenCV的去畸变,但自己实现一遍有助于理解。
    // 畸变参数
    double k1 = -0.28340811, k2 = 0.07395907, p1 = 0.00019359, p2 = 1.76187114e-05;
    // 内参
    double fx = 458.654, fy = 457.296, cx = 367.215, cy = 248.375;

    cv::Mat image = cv::imread(image_file,0);   // 图像是灰度图,CV_8UC1
    int rows = image.rows, cols = image.cols;
    cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC1);   // 去畸变以后的图

    // 计算去畸变后图像的内容
    double u_distorted = 0, v_distorted = 0;
    double x_distorted = 0, y_distorted = 0;
    double u_undistorted = 0, v_undistorted = 0;
    double x_undistorted = 0, y_undistorted = 0;
    double  r = 0;
    for (int v = 0; v < rows; v++)
        for (int u = 0; u < cols; u++) {
            // TODO 按照公式,计算点(u,v)对应到畸变图像中的坐标(u_distorted, v_distorted) (~6 lines)
            // start your code here
            x_distorted = (u - cx)/fx;
            y_distorted = (v - cy)/fy;
            r= sqrt(pow(x_distorted,2) + pow(y_distorted,2));//calculate distance r
            x_undistorted = x_distorted*(1+k1*pow(r,2)+k2* pow(r,4))+2*p1*x_distorted*y_distorted+p2*(pow(r,2)+2* pow(x_distorted,2));
            y_undistorted = y_distorted*(1+k1*pow(r,2)+k2* pow(r,4))+2*p2*x_distorted*y_distorted+p1*(pow(r,2)+2* pow(y_distorted,2));
            u_undistorted = fx*x_undistorted+cx;
            v_undistorted = fy*y_undistorted+cy;
            // end your code here

            // 赋值 (最近邻插值)
//            if (u_distorted >= 0 && v_distorted >= 0 && u_distorted < cols && v_distorted < rows) {
//                image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_distorted, (int) u_distorted);
//            } else {
//                image_undistort.at<uchar>(v, u) = 0;
//            }
            if (u_undistorted >= 0 && v_undistorted >= 0 && u_undistorted < cols && v_undistorted < rows) {
                image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_undistorted, (int) u_undistorted);
            } else {
                image_undistort.at<uchar>(v, u) = 0;
            }
        }

    // 画图
    cv::imshow("image distorted", image);
    cv::imshow("image undistorted", image_undistort);
    cv::waitKey();

    return 0;
}

j结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值