变分和泛函部分的笔记

相关概念,定理和公式

梯度的等价表示

∣ ∇ v ∣ 2 = ∑ i = 1 n ( ∂ v ∂ x i ) 2 |\nabla v|^2=\displaystyle \sum_{i=1}^{n}(\frac{\partial v}{\partial x_i})^2 ∣∇v2=i=1n(xiv)2

什么是泛函?

泛函是一个从函数空间到实数或复数的映射。换句话说,泛函是对函数进行操作的函数。它将一个函数作为输入,并输出一个数值。

例如,考虑一个定义在区域 Ω \Omega Ω上的函数 u ( x ) u(x) u(x),一个简单的泛函示例可以是积分形式的泛函:
J [ u ] = ∫ Ω F ( x , u ( x ) , ∇ u ( x ) )   d x , J[u] = \int_\Omega F(x, u(x), \nabla u(x)) \, dx, J[u]=ΩF(x,u(x),u(x))dx,
其中 F F F是关于 x x x u u u及其梯度 ∇ u \nabla u u的函数。这个泛函 J [ u ] J[u] J[u]将函数 u ( x ) u(x) u(x)映射到一个实数。在偏微分方程的研究中,寻找使得泛函取极值(最大值或最小值)的函数 u ( x ) u(x) u(x)是一个常见的问题,这通常涉及到求解相应的欧拉-拉格朗日方程,这是一个偏微分方程。

极小曲面问题

在这里插入图片描述 x O y xOy xOy 屏幕给定边界曲线 ∂ Ω \partial \Omega Ω 求三维空间以 ∂ Ω \partial \Omega Ω 为边界的曲面最小表面积,对于区域 Ω ‾ \overline{\Omega} Ω 上每个点,都有一个 u u u 值对应,这里 s s s 是参数方程的参数

在这里插入图片描述

求解思路:将求泛函 J ( v ) J(v) J(v) 的最小值转换为求实值函数 j ( ϵ ) j(\epsilon) j(ϵ) 的最小值,即 j ( ϵ ) = J ( u + ϵ v ) j(\epsilon)=J(u+\epsilon v) j(ϵ)=J(u+ϵv) 这里 ϵ v \epsilon v ϵv 是很小的扰动, ϵ ∈ R \epsilon\in\mathbb{R} ϵR v ∣ ∂ Ω = 0 v|_{\partial \Omega}=0 vΩ=0 意味着边界条件不会被破坏,即 u + ϵ v u+\epsilon v u+ϵv 仍然在允许函数类里面。

在这里插入图片描述

泛函取极值的必要条件

泛函取极值的必要条件通常是通过欧拉-拉格朗日方程给出的。假设我们有一个泛函
J [ u ] = ∫ Ω F ( x , u ( x ) , ∇ u ( x ) )   d x , J[u] = \int_\Omega F(x, u(x), \nabla u(x)) \, dx, J[u]=ΩF(x,u(x),u(x))dx,
其中 F F F是关于 x x x u u u及其梯度 ∇ u \nabla u u的函数, u ( x ) u(x) u(x)是定义在区域 Ω \Omega Ω上的函数。

J J J 是泛函, ϵ ∈ R \epsilon\in\mathbb{R} ϵR u u u 是使得泛函 J J J 取得最小值的函数, j ( ϵ ) = J ( u + ϵ v ) j(\epsilon)=J(u+\epsilon v) j(ϵ)=J(u+ϵv),那么为什么 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0 ?

函数 j ( ϵ ) = J ( u + ϵ v ) j(\epsilon) = J(u + \epsilon v) j(ϵ)=J(u+ϵv)描述了当你沿着方向 v v v从函数 u u u出发时泛函 J J J的变化。这里, u u u是使得泛函 J J J取得最小值的函数, ϵ \epsilon ϵ是实数, v v v是任意的测试函数。

因为 u u u是使得泛函 J J J取得最小值的函数,所以对于足够小的 ϵ \epsilon ϵ,我们期望在 u u u附近的泛函值 J ( u + ϵ v ) J(u + \epsilon v) J(u+ϵv)不会比 J ( u ) J(u) J(u)小。换句话说, j ( ϵ ) j(\epsilon) j(ϵ) ϵ = 0 \epsilon = 0 ϵ=0处应该有一个最小值。在数学上,函数在某点取得极小值的必要条件是该点的导数为零。因此, j ′ ( 0 ) = 0 j'(0)=0 j(0)=0

具体来说, j ′ ( 0 ) j'(0) j(0)可以通过以下方式计算:
j ′ ( 0 ) = d d ϵ J ( u + ϵ v ) ∣ ϵ = 0 = lim ⁡ ϵ → 0 J ( u + ϵ v ) − J ( u ) ϵ . j'(0) = \frac{d}{d\epsilon} J(u + \epsilon v) \bigg|_{\epsilon = 0} = \lim_{\epsilon \to 0} \frac{J(u + \epsilon v) - J(u)}{\epsilon}. j(0)=dϵdJ(u+ϵv) ϵ=0=ϵ0limϵJ(u+ϵv)J(u).

由于 u u u是使得 J J J取得最小值的函数,所以对于任意的测试函数 v v v,这个极限应该为零。这意味着泛函 J J J u u u处沿任何方向 v v v的变化率都为零,即 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0。这个条件也被称为泛函的一阶变分为零,是变分法中寻找极值函数的一个基本原则。

通过计算这个一阶变分,并应用变分法的基本引理,我们可以得到泛函取极值的必要条件,即欧拉-拉格朗日方程:
∂ F ∂ u − ∇ ⋅ ( ∂ F ∂ ∇ u ) = 0. \frac{\partial F}{\partial u} - \nabla \cdot \left(\frac{\partial F}{\partial \nabla u}\right) = 0. uF(uF)=0.

这是一个偏微分方程,解这个方程可以找到使泛函取极值的函数 u ( x ) u(x) u(x)。在某些情况下,可能还需要考虑边界条件和其他约束来确保问题的适定性。

什么是变分问题

在偏微分方程(PDE)的研究中,变分问题是指寻找函数 u ( x ) u(x) u(x),使得某个给定的泛函 J [ u ] J[u] J[u] 达到极值(最小值、最大值或鞍点)。

具体来说,变分问题可以表示为:

找到满足特定边界条件的函数 u ( x ) u(x) u(x) 使得
J [ u ] = ∫ Ω F ( x , u , ∇ u )   d x  达到极值 , J[u] = \int_\Omega F(x, u, \nabla u) \, dx \text{ 达到极值}, J[u]=ΩF(x,u,u)dx 达到极值,
其中 Ω \Omega Ω是定义域, F F F是关于 x x x u u u及其梯度 ∇ u \nabla u u的函数。函数 u ( x ) u(x) u(x)的形式和边界条件由问题的具体情况确定。

解决变分问题的一个常用方法是使用欧拉-拉格朗日方程,它是泛函取极值的必要条件。对于上述泛函 J [ u ] J[u] J[u],相应的欧拉-拉格朗日方程为:
∂ F ∂ u − ∇ ⋅ ( ∂ F ∂ ∇ u ) = 0. \frac{\partial F}{\partial u} - \nabla \cdot \left(\frac{\partial F}{\partial \nabla u}\right) = 0. uF(uF)=0.

通过求解这个偏微分方程,并满足相应的边界条件,可以找到使泛函 J [ u ] J[u] J[u]达到极值的函数 u ( x ) u(x) u(x)

J J J 是泛函, ϵ ∈ R \epsilon\in\mathbb{R} ϵR u u u 是使得泛函 J J J 取得最小值的函数, j ( ϵ ) = J ( u + ϵ v ) j(\epsilon)=J(u+\epsilon v) j(ϵ)=J(u+ϵv),那么为什么 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0 ?

函数 j ( ϵ ) = J ( u + ϵ v ) j(\epsilon) = J(u + \epsilon v) j(ϵ)=J(u+ϵv)描述了当你沿着方向 v v v从函数 u u u出发时泛函 J J J的变化。这里, u u u是使得泛函 J J J取得最小值的函数, ϵ \epsilon ϵ是实数, v v v是任意的测试函数。

因为 u u u是使得泛函 J J J取得最小值的函数,所以对于足够小的 ϵ \epsilon ϵ,我们期望在 u u u附近的泛函值 J ( u + ϵ v ) J(u + \epsilon v) J(u+ϵv)不会比 J ( u ) J(u) J(u)小。换句话说, j ( ϵ ) j(\epsilon) j(ϵ) ϵ = 0 \epsilon = 0 ϵ=0处应该有一个最小值。在数学上,函数在某点取得极小值的必要条件是该点的导数为零。因此, j ′ ( 0 ) = 0 j'(0)=0 j(0)=0

具体来说, j ′ ( 0 ) j'(0) j(0)可以通过以下方式计算:
j ′ ( 0 ) = d d ϵ J ( u + ϵ v ) ∣ ϵ = 0 = lim ⁡ ϵ → 0 J ( u + ϵ v ) − J ( u ) ϵ . j'(0) = \frac{d}{d\epsilon} J(u + \epsilon v) \bigg|_{\epsilon = 0} = \lim_{\epsilon \to 0} \frac{J(u + \epsilon v) - J(u)}{\epsilon}. j(0)=dϵdJ(u+ϵv) ϵ=0=ϵ0limϵJ(u+ϵv)J(u).

由于 u u u是使得 J J J取得最小值的函数,所以对于任意的测试函数 v v v,这个极限应该为零。这意味着泛函 J J J u u u处沿任何方向 v v v的变化率都为零,即 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0。这个条件也被称为泛函的一阶变分为零,是变分法中寻找极值函数的一个基本原则。

什么是函数空间的基本列 (Cauchy列) ?

在数学中,特别是在泛函分析领域,函数空间的基本列(或Cauchy列)是指一系列函数的序列,这些函数在该空间的度量或范数下是收敛的。

即对于函数空间中的任意一个基本列 { f n } \{f_n\} {fn} ∀ ϵ > 0 \forall\epsilon > 0 ϵ>0 ∃ N ∈ N + \exists N\in\mathbb{N}_+ NN+ s . t .   m , n > N s.t.\ m, n > N s.t. m,n>N 时, ∣ ∣ f m − f n ∣ ∣ < ϵ ||f_m-f_n||<\epsilon ∣∣fmfn∣∣<ϵ。这意味着随着 n n n 的增加,序列中的函数越来越接近彼此。

函数空间中的基本列(也称为Cauchy列)是一个序列,其中每个元素都是函数,并且序列的元素随着序列索引的增加而越来越接近彼此

更具体地说,一个函数序列 ( f n ) n = 1 ∞ (f_n)_{n=1}^\infty (fn)n=1 在某个函数空间中形成一个基本列,如果对于该空间定义的任意小的正实数 ϵ > 0 \epsilon > 0 ϵ>0,都存在一个正整数 N N N,使得当所有 m , n ≥ N m, n \geq N m,nN 时, f m f_m fm f n f_n fn 之间的距离小于 ϵ \epsilon ϵ这里的“距离”取决于函数空间上定义的具体范数或度量

例如,在 L p L^p Lp 空间中,这个距离可以通过 L p L^p Lp 范数来测量: ∥ f m − f n ∥ p < ϵ . \|f_m - f_n\|_p < \epsilon. fmfnp<ϵ.基本列的概念是完备性的核心组成部分。一个空间被称为完备的,如果每一个基本列都有一个极限存在于该空间中。完备的度量空间通常被称为Banach空间(如果它是一个线性空间并配备了一个范数),或者Hilbert空间(如果它是一个内积空间并且是完备的)。在分析和应用数学的许多领域,研究这些空间的性质及其上的基本列是非常重要的。

疑问

基本列的定义不是已经规定了基本列都有极限存在,那岂不是意味着任何一个存在基本列的函数空间都是完备的?

这是一个常见的误解。基本列的定义确实描述了一个序列中的元素随着索引的增加越来越接近彼此,但这并不直接意味着每个基本列都有一个极限存在于同一个空间中。这里的关键是区分基本列的存在与极限的存在。

在数学中,一个空间被称为完备的,当且仅当该空间中的每一个基本列都有一个极限点,且这个极限点仍属于该空间。换句话说,完备性保证了所有逼近过程(基本列)都能在同一空间内收敛到某个确定的点。

如果一个函数空间不是完备的,那么虽然可以在该空间中构造出基本列,但其中一些基本列的极限可能不存在于原空间中。这意味着尽管序列中的函数随索引增加而彼此越来越接近,但我们不能保证存在一个函数(在同一空间内),使得序列中的函数逐渐“收敛”到这个函数上。

例如,在数学分析中,连续函数的空间 C ( [ a , b ] ) C([a, b]) C([a,b])(定义在闭区间 [ a , b ] [a, b] [a,b] 上的所有连续函数的空间)是完备的,如果采用适当的范数(比如最大范数)。但是,如果考虑定义在 [ a , b ] [a, b] [a,b]上的所有有理系数多项式构成的空间,这个空间就不是完备的,因为可以构造出一个基本列,其极限是一个实系数但非有理系数的多项式,或者甚至不是多项式的其他类型的连续函数。

因此,一个空间是否完备是一个非常重要的性质,它影响了我们能在该空间上使用的数学方法和理论。完备性确保了分析和其他计算方法的适用性和有效性。

函数空间的完备性

在数学中,一个度量空间被称为完备的,如果其中的每一个基本列 (cauchy列) 都收敛到该空间中的某个元素。

什么是 L 2 ( Ω ) L_2(\Omega) L2(Ω) 空间?

L 2 ( Ω ) L^2(\Omega) L2(Ω) 是指在区域 Ω \Omega Ω 上的所有平方可积函数构成的空间。

一个函数 f f f 属于 L 2 ( Ω ) L^2(\Omega) L2(Ω),如果它满足
∫ Ω ∣ f ( x ) ∣ 2   d x < ∞ \int_{\Omega} |f(x)|^2 \,dx < \infty Ωf(x)2dx< 其中,积分是在区域 Ω \Omega Ω 上进行的。

  1. L 2 ( Ω ) L_2(\Omega) L2(Ω)是完备的
    对于 L 2 ( Ω ) L_2(\Omega) L2(Ω)空间,可以证明任意的柯西序列都有一个极限函数,该极限函数也属于 L 2 ( Ω ) L_2(\Omega) L2(Ω)空间,因此 L 2 ( Ω ) L_2(\Omega) L2(Ω)是完备的。

L 2 ( Ω ) L_2(\Omega) L2(Ω) 空间的范数定义

L 2 ( Ω ) L_2(\Omega) L2(Ω) 空间中,一个函数 v v v L 2 L_2 L2 范数定义为:

∥ v ∥ L 2 ( Ω ) = ( ∫ Ω ∣ v ( x ) ∣ 2   d x ) 1 / 2 \| v \|_{L_2(\Omega)} = \left( \int_\Omega |v(x)|^2 \, dx \right)^{1/2} vL2(Ω)=(Ωv(x)2dx)1/2

什么是函数内积?

在函数空间中,特别是在平方可积函数的空间 L 2 ( Ω ) L_2(\Omega) L2(Ω) 中,两个函数 f f f v v v 的内积通常定义为它们乘积的积分:

⟨ f , v ⟩ = ∫ Ω f ( x ) v ( x )   d x \langle f, v \rangle = \int_{\Omega} f(x) v(x) \, dx f,v=Ωf(x)v(x)dx

这里的 Ω \Omega Ω表示定义函数的域, d x dx dx 表示在该域上的积分元素。如果 Ω \Omega Ω 是一个多维域,则 d x dx dx 表示多变量积分的体积元素。这个内积给出了函数 f f f v v v L 2 L_2 L2空间中的点乘,是衡量函数相似度的一种方法。

什么是 H 1 ( Ω ) H_1(\Omega) H1(Ω) 空间 (Sobolev 空间)?

强广义微商的定义

u ∈ L 2 ( Ω ) u\in L_2(\Omega) uL2(Ω) { u N } \{u_{N}\} {uN} 是函数序列,

∃ { u N } ⊂ C 1 ( Q ‾ ) \exists \{u_{N}\}\subset C^1(\overline{Q}) {uN}C1(Q) 使得当 N → ∞ N\rightarrow\infty N 时,

u N → u u_{N}\rightarrow u uNu ∂ u N ∂ x i → v i    ( v i ∈ L 2 ( Ω ) , i = 1 , 2 ⋯ n ) \frac{\partial u_{N}}{\partial x_i}\rightarrow v_{i}\ \ (v_i\in L_2(\Omega),i=1,2\cdots n) xiuNvi  (viL2(Ω),i=1,2n)

那么称 u u u 关于 x x x 具有一阶强广义微商,记为 v i = ∂ u ∂ x i v_i = \frac{\partial u}{\partial x_i} vi=xiu

  1. 古典连续微商是强广义微商
  2. 强广义微商是唯一的

H 1 ( Ω ) H_1(\Omega) H1(Ω) 空间的定义

对于一个开集 Ω ⊂ R n \Omega \subset \mathbb{R}^n ΩRn,空间 H 1 ( Ω ) H^1(\Omega) H1(Ω) 定义为所有 Ω \Omega Ω 上平方可积(即属于 L 2 ( Ω ) L^2(\Omega) L2(Ω))的函数 u u u,且具有一阶强广义微商(平方可积)。具体来说, H 1 ( Ω ) H^1(\Omega) H1(Ω) 中的函数满足:

H 1 ( Ω ) = { u ∈ L 2 ( Ω ) ∣ ∂ u ∂ x i ∈ L 2 ( Ω ) ,   i = 1 , … , n } H^1(\Omega) = \{ u \in L^2(\Omega) \mid \frac{\partial u}{\partial x_i} \in L^2(\Omega), \, i = 1, \ldots, n \} H1(Ω)={uL2(Ω)xiuL2(Ω),i=1,,n}

其中 ∂ u ∂ x i \frac{\partial u}{\partial x_i} xiu 表示 u u u 关于第 i i i 个变量的偏导数。

H 1 ( Ω ) H^1(\Omega) H1(Ω) 范数不仅考虑了函数本身在 Ω \Omega Ω 上的平方可积性,还考虑了其一阶强广义微商的平方可积性

H 1 ( Ω ) H_1(\Omega) H1(Ω) 空间的范数定义

∥ u ∥ H 1 ( Ω ) = ( ∥ u ∥ L 2 ( Ω ) 2 + ∑ i = 1 n ∥ ∂ u ∂ x i ∥ L 2 ( Ω ) 2 ) 1 / 2 \|u\|_{H^1(\Omega)} = \left( \|u\|_{L^2(\Omega)}^2 + \sum_{i=1}^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^2(\Omega)}^2 \right)^{1/2} uH1(Ω)=(uL2(Ω)2+i=1n xiu L2(Ω)2)1/2
= [ ∫ Ω u 2 d x + ∑ i = 1 n ∫ Ω ( ∂ u ∂ x i ) 2 d x ] 1 / 2 =[\int_{\Omega}u^2dx+\sum_{i=1}^n\int_{\Omega}(\frac{\partial u}{\partial x_{i}})^2dx]^{1/2} =[Ωu2dx+i=1nΩ(xiu)2dx]1/2这里 ∥ u ∥ L 2 ( Ω ) = ( ∫ Ω ∣ u ( x ) ∣ 2   d x ) 1 / 2 \|u\|_{L^2(\Omega)} = \left( \int_{\Omega} |u(x)|^2 \, dx \right)^{1/2} uL2(Ω)=(Ωu(x)2dx)1/2

H 1 ( Ω ) H_1(\Omega) H1(Ω) 空间是完备的

∀  基本列  { u k } ⊂ H 1 ( Ω ) \forall\ 基本列\ \{u_k\}\subset H_1(\Omega)  基本列 {uk}H1(Ω)

∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) → 0   ( k , l → ∞ ) ||u_k-u_l||_{H^1(\Omega)}\rightarrow0\ (k,l\rightarrow\infty) ∣∣ukulH1(Ω)0 (k,l)

∃ u ∈ H 1 ( Ω ) ,   s . t .   u k → u \exists u\in H_1(\Omega),\ s.t. \ u_k\rightarrow u uH1(Ω), s.t. uku

L 2 ( Ω ) L_2(\Omega) L2(Ω) 空间和 H 1 ( Ω ) H_1(\Omega) H1(Ω) 空间的关系

H 1 ( Ω ) H^1(\Omega) H1(Ω)是一个 Sobolev \text{Sobolev} Sobolev 空间,它包含了 L 2 ( Ω ) L^2(\Omega) L2(Ω) 中的所有那些函数本身和其一阶强广义微商都属于 L 2 ( Ω ) L^2(\Omega) L2(Ω)。也就是说,一个函数 u u u 属于 H 1 ( Ω ) H^1(\Omega) H1(Ω),如果 u ∈ L 2 ( Ω ) u \in L^2(\Omega) uL2(Ω)并且 ∇ u \nabla u u 也属于 ( L 2 ( Ω ) ) n (L^2(\Omega))^n (L2(Ω))n

关系方面, H 1 ( Ω ) H^1(\Omega) H1(Ω) L 2 ( Ω ) L^2(\Omega) L2(Ω)的一个子空间,也就是说,所有属于 H 1 ( Ω ) H^1(\Omega) H1(Ω)的函数也一定属于 L 2 ( Ω ) L^2(\Omega) L2(Ω),但反过来不一定成立。简而言之, H 1 ( Ω ) H^1(\Omega) H1(Ω)中的函数不仅自己要在 Ω \Omega Ω上平方可积,它们的一阶强广义微商也要平方可积。这使得 H 1 ( Ω ) H^1(\Omega) H1(Ω)中的函数在某种意义上比 L 2 ( Ω ) L^2(\Omega) L2(Ω)中的函数更“平滑”。

什么是 H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) 空间?

C 1 ( Ω ) C^1(\Omega) C1(Ω) 表示在区域 Ω \Omega Ω 上所有具有连续一阶偏导数的函数的集合。

C 0 1 ( Ω ) C_0^1(\Omega) C01(Ω) 下标 “0” 通常表示这些函数在 Ω \Omega Ω 的边界上或无穷远处满足某种形式的“消失”条件(紧支集),比如函数及其一阶偏导数在 Ω \Omega Ω 的边界上趋于零。

C 0 1 ( Ω ) C_0^1(\Omega) C01(Ω) 通常指的是所有在 Ω \Omega Ω 上具有连续一阶导数,并且函数本身及其一阶导数在 Ω \Omega Ω 的边界上或无穷远处趋于零的函数集合

C 0 1 ( Ω ) = { u ∈ C 1 ( Q ‾ ) ∣ u ∂ Ω = 0 } C_0^1(\Omega)=\{u\in C^1(\overline{Q})|u_{\partial \Omega}=0\} C01(Ω)={uC1(Q)uΩ=0}

C 0 1 ( Ω ) C_0^1(\Omega) C01(Ω) H 1 ( Ω ) H^1(\Omega) H1(Ω) 中的闭包记为 H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω)

H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) H 1 ( Ω ) H^1(\Omega) H1(Ω) 空间的关系?

H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) H 1 ( Ω ) H^1(\Omega) H1(Ω) 空间的线性子空间

H 0 1 ( Ω ) ⊂ H 1 ( Ω ) H_0^1(\Omega)\subset H^1(\Omega) H01(Ω)H1(Ω)

什么是 Poisson \text{Poisson} Poisson 方程 Dirichlet \text{Dirichlet} Dirichlet 问题?

{ − Δ u ( x ) = f ( x ) , x ∈ Ω , u ( x ) ∣ ∂ Ω = g ( x ) \left\{ \begin{aligned} -\Delta u(x) &= f(x), & x &\in \Omega, \\ u(x)|_{\partial\Omega}&= g(x) \end{aligned} \right. {Δu(x)u(x)Ω=f(x),=g(x)xΩ,

g ( x ) ≡ 0 g(x)\equiv0 g(x)0 时,是齐次的 Dirichlet 边界条件

什么是 Poisson \text{Poisson} Poisson 方程 Neumann \text{Neumann} Neumann 问题 ?

{ − Δ u = f , ( x , y ) ∈ Ω , ∂ u ∂ n ∣ ∂ Ω = φ , ( x , y ) ∈ ∂ Ω , \left\{ \begin{aligned} -\Delta u&= f, & (x,y) &\in \Omega, \\ \frac{\partial u}{\partial n}|_{\partial\Omega} &= \varphi, & (x,y) &\in \partial\Omega, \end{aligned} \right. ΔunuΩ=f,=φ,(x,y)(x,y)Ω,Ω,

Δ \Delta Δ表示Laplace算子, ∂ u ∂ n \frac{\partial u}{\partial n} nu表示 u u u关于外法线 n n n的导数

Neumann问题有解的必要条件

∬ Ω f ( x , y )   d x d y + ∫ ∂ Ω φ   d l = 0. \iint_{\Omega} f(x,y) \, dxdy + \int_{\partial\Omega} \varphi \, dl = 0. Ωf(x,y)dxdy+Ωφdl=0.

Poisson \text{Poisson} Poisson 方程齐次 Dirichlet \text{Dirichlet} Dirichlet 问题的广义解 u u u 是如何通过泛函定义的?

{ − Δ u ( x ) = f ( x ) , x ∈ Ω , u ( x ) ∣ ∂ Ω = 0 \left\{ \begin{aligned} -\Delta u(x) &= f(x), & x &\in \Omega, \\ u(x)|_{\partial\Omega}&= 0 \end{aligned} \right. {Δu(x)u(x)Ω=f(x),=0xΩ,

∃ u ∈ H 0 1 ( Ω ) ,   s . t .   J ( u ) = min ⁡ v ∈ H 0 1 ( Ω ) J ( v ) \exists u \in H_0^1(\Omega),\ s.t.\ J(u)=\min_{v\in H_0^1(\Omega)}J(v) uH01(Ω), s.t. J(u)=minvH01(Ω)J(v)

其中 J ( v ) = 1 2 ∑ i = 1 n ∫ Ω ( ∂ v ∂ x i ) 2 d x − ∫ Ω f v d x J(v)=\frac{1}{2}\displaystyle\sum_{i=1}^{n}\int_{\Omega}(\frac{\partial v}{\partial x_i})^2dx-\int_{\Omega}fvdx J(v)=21i=1nΩ(xiv)2dxΩfvdx

= 1 2 ∫ Ω ∣ ∇ v ∣ 2 d x − ∫ Ω f v d x =\frac{1}{2}\int_{\Omega}|\nabla v|^2dx-\int_{\Omega} fvdx =21Ω∣∇v2dxΩfvdx

则称 u u u Poisson \text{Poisson} Poisson 方程齐次边界 Dirichlet \text{Dirichlet} Dirichlet 问题的广义解 (弱解)

J ( u ) = min ⁡ v ∈ H 0 1 ( Ω ) J ( v )     J(u)=\min_{v\in H_0^1(\Omega)}J(v) \ \ \ J(u)=vH01(Ω)minJ(v)   

平行四边形等式

∣ ∣ u + v 2 ∣ ∣ L 2 ( Ω ) 2 + ∣ ∣ u − v 2 ∣ ∣ L 2 ( Ω ) 2 = 1 2 ( ∣ ∣ u ∣ ∣ L 2 ( Ω ) 2 + ∣ ∣ v ∣ ∣ L 2 ( Ω ) 2 ) ||\frac{u+v}{2}||_{L_2(\Omega)}^{2}+||\frac{u-v}{2}||_{L_2(\Omega)}^{2}=\frac{1}{2}(||u||_{L_2(\Omega)}^{2}+||v||_{L_2(\Omega)}^{2}) ∣∣2u+vL2(Ω)2+∣∣2uvL2(Ω)2=21(∣∣uL2(Ω)2+∣∣vL2(Ω)2)

引理 3.4 等式

∀ u , v ∈ H 0 1 ( Ω ) \forall u,v\in H_0^1(\Omega) u,vH01(Ω) ∣ ∣ ∇ ( u − v ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u ) + J ( v ) − 2 J ( u + v 2 ) ||\frac{\nabla(u-v)}{2}||_{L_2(\Omega)}^{2}=J(u)+J(v)-2J(\frac{u+v}{2}) ∣∣2(uv)L2(Ω)2=J(u)+J(v)2J(2u+v)

Friedrichs \text{Friedrichs} Friedrichs 不等式

u ∈ H 0 1 ( Ω ) → ∣ ∣ u ∣ ∣ L 2 ( Ω ) ≤ 2 d ∣ ∣ ∇ u ∣ ∣ L 2 ( Ω ) u\in H_0^1(\Omega)\rightarrow ||u||_{L_2(\Omega)}\leq 2d||\nabla u||_{L_2(\Omega)} uH01(Ω)∣∣uL2(Ω)2d∣∣∇uL2(Ω) d d d Ω \Omega Ω 的直径

变分问题解的唯一性的证明

{ − Δ u ( x ) = f ( x ) , x ∈ Ω , u ( x ) ∣ ∂ Ω = 0 \left\{ \begin{aligned} -\Delta u(x) &= f(x), & x &\in \Omega, \\ u(x)|_{\partial\Omega}&= 0 \end{aligned} \right. {Δu(x)u(x)Ω=f(x),=0xΩ,

∃ u ∈ H 0 1 ( Ω ) ,   s . t .   J ( u ) = min ⁡ v ∈ H 0 1 ( Ω ) J ( v ) \exists u \in H_0^1(\Omega),\ s.t.\ J(u)=\min_{v\in H_0^1(\Omega)}J(v) uH01(Ω), s.t. J(u)=minvH01(Ω)J(v)

其中 J ( v ) = 1 2 ∑ i = 1 n ∫ Ω ( ∂ v ∂ x i ) 2 d x − ∫ Ω f v d x J(v)=\frac{1}{2}\displaystyle\sum_{i=1}^{n}\int_{\Omega}(\frac{\partial v}{\partial x_i})^2dx-\int_{\Omega}fvdx J(v)=21i=1nΩ(xiv)2dxΩfvdx

= 1 2 ∫ Ω ∣ ∇ v ∣ 2 d x − ∫ Ω f v d x =\frac{1}{2}\int_{\Omega}|\nabla v|^2dx-\int_{\Omega} fvdx =21Ω∣∇v2dxΩfvdx

则称 u u u Poisson \text{Poisson} Poisson 方程齐次边界 Dirichlet \text{Dirichlet} Dirichlet 问题的广义解 (弱解)

J ( u ) = min ⁡ v ∈ H 0 1 ( Ω ) J ( v )     J(u)=\min_{v\in H_0^1(\Omega)}J(v) \ \ \ J(u)=vH01(Ω)minJ(v)   

上述这个变分的唯一性证明过程如下:

设该变分问题有 2 2 2 个解 u 1 , u 2 ∈ H 0 1 ( Ω ) ,   s . t . u_1,u_2\in H_0^1(\Omega),\ s.t. u1,u2H01(Ω), s.t. J ( u 1 ) = J ( u 2 ) = m = inf ⁡ v ∈ H 0 1 ( Ω ) J ( v ) J(u_1)=J(u_2)=m=\inf_{v\in H_0^1(\Omega)}J(v) J(u1)=J(u2)=m=vH01(Ω)infJ(v)这里 m m m 是下确界

那么由引理 3.4 3.4 3.4 ∣ ∣ ∇ ( u 1 − u 2 ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u 1 ) + J ( u 2 ) − 2 J ( u 1 + u 2 2 ) ||\frac{\nabla(u_1-u_2)}{2}||_{L_2(\Omega)}^{2}=J(u_1)+J(u_2)-2J(\frac{u_1+u_2}{2}) ∣∣2(u1u2)L2(Ω)2=J(u1)+J(u2)2J(2u1+u2) = m + m − 2 J ( u 1 + u 2 2 ) =m+m-2J(\frac{u_1+u_2}{2}) =m+m2J(2u1+u2) = 2 [ m − J ( u 1 + u 2 2 ) ] ≤ 0 =2[m-J(\frac{u_1+u_2}{2})]\leq 0 =2[mJ(2u1+u2)]0

∵ ∣ ∣ ∇ ( u 1 − u 2 ) 2 ∣ ∣ L 2 ( Ω ) 2 ≥ 0 \because ||\frac{\nabla(u_1-u_2)}{2}||_{L_2(\Omega)}^{2} \geq0 ∣∣2(u1u2)L2(Ω)20

∴ 0 ≤ ∣ ∣ ∇ ( u 1 − u 2 ) 2 ∣ ∣ L 2 ( Ω ) 2 ≤ 0 \therefore 0\leq ||\frac{\nabla(u_1-u_2)}{2}||_{L_2(\Omega)}^{2}\leq 0 0∣∣2(u1u2)L2(Ω)20

∴ ∣ ∣ ∇ ( u 1 − u 2 ) ∣ ∣ L 2 ( Ω ) = 0 \therefore ||\nabla(u_1-u_2)||_{L_2(\Omega)}=0 ∣∣∇(u1u2)L2(Ω)=0

Friedrichs \text{Friedrichs} Friedrichs 不等式

0 ≤ ∣ ∣ u 1 − u 2 ∣ ∣ L 2 ( Ω ) ≤ 2 d ∣ ∣ ∇ ( u 1 − u 2 ) ∣ ∣ L 2 ( Ω ) ≤ 0 0\leq ||u_1-u_2||_{L_2(\Omega)}\leq 2d||\nabla (u_1-u_2)||_{L_2(\Omega)}\leq0 0∣∣u1u2L2(Ω)2d∣∣∇(u1u2)L2(Ω)0

∴ ∣ ∣ u 1 − u 2 ∣ ∣ L 2 ( Ω ) = 0 → u 1 = u 2 \therefore ||u_1-u_2||_{L_2(\Omega)}=0\rightarrow u_1=u_2 ∣∣u1u2L2(Ω)=0u1=u2

变分问题解的存在性的证明

下面证明上述变分问题解的存在性:

  1. 首先证明 J ( v ) J(v) J(v) 有下确界

附注
L 2 ( Ω ) L^2(\Omega) L2(Ω) 空间中, ⟨ f , v ⟩ \langle f, v \rangle f,v 表示 f f f v v v 的内积,定义为: ⟨ f , v ⟩ = ∫ Ω f ( x ) v ( x )   d x \langle f, v \rangle = \int_{\Omega} f(x)v(x) \, dx f,v=Ωf(x)v(x)dx ∣ ∣ f ∣ ∣ L 2 ( Ω ) ||f||_{L_2(\Omega)} ∣∣fL2(Ω) ∣ ∣ v ∣ ∣ L 2 ( Ω ) ||v||_{L_2(\Omega)} ∣∣vL2(Ω) 分别表示 f f f v v v L 2 L^2 L2 范数,定义为: ∣ ∣ f ∣ ∣ L 2 ( Ω ) = ( ∫ Ω ∣ f ( x ) ∣ 2   d x ) 1 / 2 ||f||_{L_2(\Omega)} = \left(\int_{\Omega} |f(x)|^2 \, dx\right)^{1/2} ∣∣fL2(Ω)=(Ωf(x)2dx)1/2 ∣ ∣ v ∣ ∣ L 2 ( Ω ) = ( ∫ Ω ∣ v ( x ) ∣ 2   d x ) 1 / 2 ||v||_{L_2(\Omega)} = \left(\int_{\Omega} |v(x)|^2 \, dx\right)^{1/2} ∣∣vL2(Ω)=(Ωv(x)2dx)1/2根据柯西-施瓦茨不等式 ( Cauchy-Schwarz inequality \text{Cauchy-Schwarz inequality} Cauchy-Schwarz inequality),我们有: ∣ ⟨ f , v ⟩ ∣ ≤ ∣ ∣ f ∣ ∣ L 2 ( Ω ) ⋅ ∣ ∣ v ∣ ∣ L 2 ( Ω ) \left|\langle f, v \rangle\right| \leq ||f||_{L_2(\Omega)} \cdot ||v||_{L_2(\Omega)} f,v∣∣fL2(Ω)∣∣vL2(Ω)这表明,函数 f f f v v v L 2 ( Ω ) L^2(\Omega) L2(Ω) 空间中的内积的绝对值不会超过它们的 L 2 L^2 L2 范数的乘积。

∀ v ∈ H 0 1 ( Ω ) \forall v\in H_0^1(\Omega) vH01(Ω) v v v 带入该变分问题泛函 J J J 的表达式有 J ( v ) = 1 2 ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) 2 − ⟨ f , v ⟩ J(v)=\frac{1}{2}||\nabla v||_{L_{2}(\Omega)}^{2}-\langle f,v \rangle J(v)=21∣∣∇vL2(Ω)2f,v ≥ 1 2 ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) 2 − ∣ ∣ f ∣ ∣ L 2 ( Ω ) ∣ ∣ v ∣ ∣ L 2 ( Ω ) \geq \frac{1}{2}||\nabla v||_{L_{2}(\Omega)}^{2}-||f||_{L_{2}(\Omega)}||v||{L_{2}(\Omega)} 21∣∣∇vL2(Ω)2∣∣fL2(Ω)∣∣v∣∣L2(Ω)

应用 Friedrichs \text{Friedrichs} Friedrichs 不等式得
∣ ∣ v ∣ ∣ L 2 ( Ω ) ≤ 2 d ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) ||v||_{L_{2}(\Omega)}\leq2d||\nabla v||_{L_{2}(\Omega)} ∣∣vL2(Ω)2d∣∣∇vL2(Ω) − ∣ ∣ v ∣ ∣ L 2 ( Ω ) ≥ − 2 d ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) -||v||_{L_{2}(\Omega)}\geq-2d||\nabla v||_{L_{2}(\Omega)} ∣∣vL2(Ω)2d∣∣∇vL2(Ω)所以 J ( v ) ≥ 1 2 ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) 2 − 2 d ∣ ∣ f ∣ ∣ L 2 ( Ω ) ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) J(v)\geq \frac{1}{2}||\nabla v||_{L_{2}(\Omega)}^{2}-2d||f||_{L_{2}(\Omega)}||\nabla v||_{L_{2}(\Omega)} J(v)21∣∣∇vL2(Ω)22d∣∣fL2(Ω)∣∣∇vL2(Ω) = 1 2 ( ∣ ∣ ∇ v ∣ ∣ L 2 ( Ω ) − 2 d ∣ ∣ f ∣ ∣ L 2 ( Ω ) ) 2 − 2 d 2 ∣ ∣ f ∣ ∣ L 2 ( Ω ) 2 =\frac{1}{2}(||\nabla v||_{L_2(\Omega)}-2d||f||_{L_2(\Omega)})^2-2d^2||f||_{L_2(\Omega)}^2 =21(∣∣∇vL2(Ω)2d∣∣fL2(Ω))22d2∣∣fL2(Ω)2 ≥ − 2 d 2 ∣ ∣ f ∣ ∣ L 2 ( Ω ) 2 \geq-2d^2||f||_{L_2(\Omega)}^2 2d2∣∣fL2(Ω)2因此 J ( v ) J(v) J(v) 有下确界,记为 m = inf ⁡ v ∈ H 0 1 ( Ω ) J ( v ) m=\inf_{v\in H_0^1(\Omega)}J(v) m=vH01(Ω)infJ(v)根据下确界的定义, ∃ { v k } ⊂ H 0 1 ( Ω ) ,   s . t . \exists \{v_k\}\subset H_0^1(\Omega), \ s.t. {vk}H01(Ω), s.t. J ( v k ) ≤ m + 1 k J(v_k)\leq m+\frac{1}{k} J(vk)m+k1

  1. 证明 { v k } \{v_k\} {vk} H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) 的基本列

根据引理 3.4 3.4 3.4 ∣ ∣ ∇ ( v k − v l ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( v k ) + J ( v l ) − 2 J ( v k + v l 2 ) ||\frac{\nabla(v_k-v_l)}{2}||_{L_2(\Omega)}^{2}=J(v_k)+J(v_l)-2J(\frac{v_k+v_l}{2}) ∣∣2(vkvl)L2(Ω)2=J(vk)+J(vl)2J(2vk+vl) ≤ m + 1 k + m + 1 l − 2 m \leq m+\frac{1}{k}+m+\frac{1}{l}-2m m+k1+m+l12m = 1 k + 1 l =\frac{1}{k}+\frac{1}{l} =k1+l1

再应用 Friedrichs \text{Friedrichs} Friedrichs 不等式

∣ ∣ v k − v l ∣ ∣ H 1 ( Ω ) = ( ∣ ∣ v k − v l ∣ ∣ L 2 ( Ω ) 2 + ∣ ∣ ∇ ( v k − v l ) ∣ ∣ L 2 ( Ω ) 2 ) 1 / 2 ||v_k-v_l||_{H_1(\Omega)}=(||v_k-v_l||_{L_2(\Omega)}^{2}+||\nabla (v_k-v_l)||_{L_2(\Omega)}^{2})^{1/2} ∣∣vkvlH1(Ω)=(∣∣vkvlL2(Ω)2+∣∣∇(vkvl)L2(Ω)2)1/2 = ( ∣ ∣ v k − v l ∣ ∣ L 2 ( Ω ) 2 + ∣ ∣ ∇ v k − ∇ v l ∣ ∣ L 2 ( Ω ) 2 ) 1 / 2 =(||v_k-v_l||_{L_2(\Omega)}^{2}+||\nabla v_k-\nabla v_l||_{L_2(\Omega)}^{2})^{1/2} =(∣∣vkvlL2(Ω)2+∣∣∇vkvlL2(Ω)2)1/2

∣ ∣ v k − v l ∣ ∣ L 2 ( Ω ) 2 ≤ 4 d 2 ∣ ∣ ∇ v k − ∇ v l ∣ ∣ L 2 ( Ω ) 2 || v_k- v_l||_{L_2(\Omega)}^{2}\leq4d^2||\nabla v_k-\nabla v_l||_{L_2(\Omega)}^{2} ∣∣vkvlL2(Ω)24d2∣∣∇vkvlL2(Ω)2

∴ ∣ ∣ v k − v l ∣ ∣ H 1 ( Ω ) ≤ ( 4 d 2 + 1 ) 1 / 2 ∣ ∣ ∇ v k − ∇ v l ∣ ∣ L 2 ( Ω ) → 0   ( k , l → ∞ ) \therefore ||v_k-v_l||_{H_1(\Omega)}\leq (4d^2+1)^{1/2}||\nabla v_k-\nabla v_l||_{L_2(\Omega)}\rightarrow 0\ (k,l\rightarrow \infty) ∣∣vkvlH1(Ω)(4d2+1)1/2∣∣∇vkvlL2(Ω)0 (k,l)所以 { v k } \{v_k\} {vk} H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) 的基本列

H 0 1 ( Ω ) H_0^1(\Omega) H01(Ω) 的完备性,存在 u ∈ H 0 1 ( Ω ) ,   s . t .   v k → u u\in H_0^1(\Omega),\ s.t.\ v_k\rightarrow u uH01(Ω), s.t. vku

所以 J ( v k ) → J ( u )    ( k → ∞ ) J(v_k)\rightarrow J(u)\ \ (k\rightarrow \infty) J(vk)J(u)  (k)

于是 J ( u ) = m = inf ⁡ v ∈ H 0 1 ( Ω ) J ( v ) J(u)=m=\inf_{v\in H_0^1(\Omega)}J(v) J(u)=m=vH01(Ω)infJ(v)

u u u 是变分问题的解

附注 为什么 ∣ ∣ ∇ v k − ∇ v l ∣ ∣ L 2 ( Ω ) → 0   ( k , l → ∞ ) ||\nabla v_k-\nabla v_l||_{L_2(\Omega)}\rightarrow 0\ (k,l\rightarrow \infty) ∣∣∇vkvlL2(Ω)0 (k,l)

因为上面已经推出 ∣ ∣ ∇ ( v k − v l ) 2 ∣ ∣ L 2 ( Ω ) 2 ≤ 1 k + 1 l ||\frac{\nabla(v_k-v_l)}{2}||_{L_2(\Omega)}^{2}\leq\frac{1}{k}+\frac{1}{l} ∣∣2(vkvl)L2(Ω)2k1+l1也即 0 ≤ ∣ ∣ ∇ v k − ∇ v l ) ∣ ∣ L 2 ( Ω ) ≤ 1 k + 1 l = 0 ( k , l → ∞ ) 0\leq||{\nabla v_k-\nabla v_l)}||_{L_2(\Omega)}\leq\frac{1}{k}+\frac{1}{l}=0(k,l\rightarrow \infty) 0∣∣vkvl)L2(Ω)k1+l1=0(k,l)所以 ∣ ∣ ∇ v k − ∇ v l ∣ ∣ L 2 ( Ω ) → 0   ( k , l → ∞ ) ||\nabla v_k-\nabla v_l||_{L_2(\Omega)}\rightarrow 0\ (k,l\rightarrow \infty) ∣∣∇vkvlL2(Ω)0 (k,l)

  • 20
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值