点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文均出自『自动驾驶之心知识星球』,2024前沿综述加入获取!

1、端到端自动驾驶
【CARLA中的端到端自动驾驶全面综述】讨论了基于CARLA的最先进实现如何通过各种模型输入、输出、架构和训练范式解决端到端自动驾驶中遇到的各种问题。对这些方法进行了简明总结。最后,对这些方法进行了评估与讨论,并提出了未来应对端到端模型当前挑战的方向。
题目:End-to-End Autonomous Driving in CARLA : A Survey
非机构化道路上的自动驾驶:我们走了多远?
【非机构化道路上的自动驾驶:我们走了多远?】通过250多篇关于非结构化室外环境自动驾驶的论文,涵盖了离线地图构建、位姿估计、环境感知、路径规划、端到端自动驾驶、数据集及相关挑战。
题目:Autonomous Driving in Unstructured Environments: How Far Have We Come?
2、occupancy感知
信息融合视角下的自动驾驶占用感知综述#3D占用感知技术旨在观察和了解自动驾驶车辆的密集3D环境。由于其全面的感知能力,该技术正成为自动驾驶感知系统的一种趋势,并引起了业界和学术界的极大关注。与传统的鸟瞰图(BEV)感知类似,3D占用感知具有多源输入和信息融合的必要性。然而,不同的是,它能够捕捉到被2D BEV忽略的垂直结构。在这项调查中,我们回顾了关于3D占用感知的最新工作,并对各种输入模式的方法进行了深入分析。具体来说,我们总结了通用的网络流程,突出了信息融合技术,并讨论了有效的网络训练。我们在最受欢迎的数据集上评估并分析了最先进的占用感知性能。此外,还讨论了挑战和未来的研究方向。我们希望本文能激发社区的热情,并鼓励开展更多关于3D占用感知的研究工作。
论文:A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective
【基于视觉的自动驾驶3D Occupancy预测研究综述与展望】从三个方面对基于视觉的3D占据预测的进展进行了全面调查:特征增强、部署友好性和标签效率,并对各类方法的潜力和挑战进行了深入分析。
题目:Vision-based 3D occupancy prediction in autonomous driving: a review and outlook
基于视觉的自动驾驶3D占用预测研究综述与展望仓库:https://github.com/zya3d/Awesome-3D-Occupancy-Prediction
3、目标检测&分割&跟踪
【2024年10月 首篇最新!开放世界目标检测全面综述】涵盖了问题定义、基准数据集、源代码、评估指标以及现有方法的对比研究等重要方面。这是首篇对新兴OWOD领域进行全面综述的论文,引用了超过一百篇参考文献,标志着目标检测技术的重要进展。
题目:Open World Object Detection: A Survey
【2024年9月最新!自动驾驶3D目标检测中的深度学习前沿】本综述探讨了3D目标检测在提高自动驾驶汽车安全性和效率方面的关键作用,强调了其在自动驾驶系统中的重要性。这篇综合性综述旨在为研究人员和从业者提供有价值的见解,指导开发可靠的3D目标检测系统,这对于自动驾驶技术的安全部署至关重要。
题目:Deep Learning Frontiers in 3D Object Detection: A Comprehensive Review for Autonomous Driving
【2024年9月最新自动驾驶中的3D目标检测综述!】总结了传统的3D目标检测方法,重点介绍了基于相机、基于LiDAR以及融合检测技术。对每种方法的优缺点进行了全面分析,强调了在精度和稳健性方面的进展。
题目:A Review of Developments in 3D Object Detection for Autonomous Driving
【2024.8月最新!自动驾驶中3D目标检测的综述:技术进步和未来方向】全面总结了传统的3D目标检测方法,重点关注基于摄像头、基于激光雷达以及融合检测技术。对每种方法的优缺点进行了综合分析,突出展示了在准确性和鲁棒性方面的进展。
题目:A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions
【自动驾驶的语义分割综述仓库分享】包括:FCN-like Network、Transformer-based Networks、Two-branch Network、Multi Branch Networks。\
仓库链接:https://github.com/mohamedac29/Real-time-Semantic-Segmentation-Survey
YOLOv10的起源: 《You Only Look Once》系列的十年!
YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once Series
【2024最新综述!自动驾驶中的单目3D 车道线检测: 最新成就、挑战与展望】本综述定义、分析和审查了3D车道检测研究领域的当前成就,涵盖了3D车道检测流程,调查了最先进算法的性能,分析了尖端建模选择的时间复杂性,并突出了当前研究努力的主要成就和局限性。
题目:Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks
【2024年7月最新——自动驾驶3D目标检测最新进展综述】全面调查了自动驾驶汽车最先进的3D目标检测技术,强调了多传感器融合技术和先进深度学习模型的重要性。此外还提出了未来研究的关键领域,包括增强传感器融合算法、提高计算效率以及解决伦理、安全和隐私问题。
题目:Recent Advances in 3D Object Detection for Self-Driving Vehicles: A Survey
【3D点云分类和语义分割的深度学习技术综述】分析了最近在点云处理中应用的深度学习方法的进展,并提出了推进该领域的挑战和潜在方向。重点介绍了3D点云处理中的两个主要任务——即3D形状分类和语义分割。
题目:A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
【300多种分割方法一网打尽!基础模型时代的图像分割综述】重点关注以基础模型驱动的图像分割研究。还提供了来自CLIP、Stable Diffusion和DINO等基础模型的分割知识的见解。提供了对300多种分割方法的详尽概述,以概括当前研究工作的广度。
题目:Image Segmentation in Foundation Model Era: A Survey
【自动驾驶中的鱼眼感知】探讨了如何在最大限度地减少鱼眼摄像头缺点的同时,充分利用其优点!
题目:An Overview of Multi-View Fisheye for Vision-First Autonomous Driving
【通过深度迁移学习来推进3D点云理解:一项全面调查】全面概述了使用DTL和域适应(DA)理解3DPC的最新技术。各种应用,如3DPC目标检测、语义标注、分割、分类、配准、降采样/升采样和去噪。
题目:Advancing 3D Point Cloud Understanding through Deep Transfer Learning: A Comprehensive Survey
【半监督目标检测:从CNN到Transformer】深入探讨了半监督学习的核心组件及其在目标检测框架中的整合,涵盖数据增强技术、伪标签策略、一致性正则化和对抗训练方法。
题目:Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer
【自动驾驶全景感知研究综述】本综述回顾了典型的全景感知模型,分析它们的独特输入和架构,并将其与性能、响应速度和资源利用情况进行比较。
题目:Panoptic Perception for Autonomous Driving: A Survey
深度学习在自动驾驶道路分析中的进展综述
https://t.zsxq.com/ujefS
很棒的多模态目标跟踪综述
https://t.zsxq.com/nnkOB
不同级别自动驾驶的分层感知增强:最新综述
https://t.zsxq.com/195WALh3T
计算机视觉与仿真中的环绕视鱼眼光学:综述与挑战
https://t.zsxq.com/LWg8F
2024最新!自动驾驶中鲁棒的3D目标检测综述
https://t.zsxq.com/Xd5wZ
2024最新!基于多模态融合的3D目标检测:自动驾驶中的新趋势
https://t.zsxq.com/6sBSJ
ADAS中的目标检测、识别和跟踪算法——近期趋势研究综述
https://t.zsxq.com/dXypK
自动泊车系统技术综述
https://t.zsxq.com/114Cg
4、大模型
【硬件加速大型语言模型的Transformer网络全面综述!】该综述介绍了已提出的框架,然后在技术、处理平台(FPGA、ASIC、内存中、GPU)、加速比、能效、性能(GOPs)和能效(GOPs/W)等方面进行定性和定量比较。
题目:Hardware Acceleration of LLMs: A comprehensive survey and comparison
【基础模型时代的SAM在视频中的应用系统综述】作为首个对SAM在视频领域进展进行综述的工作。重点讨论其在各种任务中的应用,探讨了最近的进展以及在广泛应用中开发基础模型的创新机会。
题目:Segment Anything for Videos
【视觉-语言多模态大模型的全面概述】118页的综述,是我目前看过最全最完整的综述,系统梳理了大模型的整个发展历史和子领域需要重点关注的未来方向!对于刚入门的同学系统性的了解视觉大语言模型很有帮助。本书是一本权威的资源,既提供了理论框架,也提供了实践见解,为研究人员、从业者以及对自然语言处理与计算机视觉交叉领域感兴趣的学生提供了宝贵的参考。
题目:A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
自动驾驶中的大模型!全面概述了XLMs在实现自动驾驶方面的潜力
https://t.zsxq.com/KdFGu
从有效多模态模型到世界模型
https://t.zsxq.com/NkhMA
Segment Anything Model 综述
https://t.zsxq.com/Y3JuE
自动驾驶的视觉基础模型最新综述
https://t.zsxq.com/764e6
5、扩散模型
【扩散模型及其应用全面综述】本综述提供了对扩散模型的全面概述,包括其理论基础和算法创新。突出了其在媒体质量、真实性、合成、图像变换、医疗保健等多个领域的应用。
题目:A Comprehensive Survey on Diffusion Models and Their Applications
【首个围绕低层次视觉任务中去噪扩散模型技术全面综述】介绍了三种通用的扩散模型框架,并探讨了它们与其他常用深度生成模型的关联,从而为后续分析奠定理论基础。此次全面审查旨在促进对低层次视觉任务中去噪扩散模型研究现状的深刻理解。
题目:Diffusion Models in Low-Level Vision: A Survey
扩散模型在3D视觉中的算法及应用全面综述
https://t.zsxq.com/GgYqH
扩散模型如何在智能交通(自动驾驶、交通仿真、轨迹预测等)领域发挥作用?
https://t.zsxq.com/0jwWY
6、多模态
【200+文献!多模态对齐和融合最新综述】全面回顾了近年来机器学习中多模态对齐与融合的最新进展,这些进展得益于文本、图像、音频和视频等数据类型的日益多样化。
题目:Multimodal Alignment and Fusion: A Survey
【低质量数据的多模态融合:最新综述】从数据中心的角度看,确定了多模态融合在低质量数据上面临的四个主要挑战。这个新的分类法将使研究人员能够了解该领域的现状,并确定几个潜在的方向。
题目:Multimodal Fusion on Low-quality Data: A Comprehensive Survey
7、强化学习
【机器人中的强化学习最新综述!】对用于机器人的DRL进行了现代综述,特别着重评估了DRL在实现若干关键机器人能力方面的现实成功。
题目:Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes
8、Mamba
【Mamba才是计算机视觉的未来?24年10月最新综述一探究竟】本综述分析了 Mamba 模型的独特贡献、计算优势和应用,同时也指出了挑战和未来潜在的研究方向。
题目:Mamba in Vision: A Comprehensive Survey of Techniques and Applications
【A Survey on Vision Mamba】首篇Mamba在视觉中的应用全面综述。
题目:A Survey on Vision Mamba: Models, Applications and Challenges
【最近与Mamba相关的研究深入调查】全面回顾了相关研究,重点介绍了Mamba模型的架构设计、数据适应性和应用。最后,我们讨论了当前的局限性,并探索了各种有前途的研究方向,以为未来的研究提供更深入的见解
题目:A Survey of Mamba
本文均出自『自动驾驶之心知识星球』,2024前沿综述加入获取!
