costmap 简单介绍(二)

costmap程序架构
接上一期,通过阅读indigo版本的costmap源码包,简单整理了下costmap的程序架构。


这里写图片描述


move_base刚启动时就建立了两个costmap,而这两个costmap都加载了三个Layer插件,它们的初始化过程如上图所示。
StaticLayer主要为处理gmapping或者amcl等产生的静态地图。
ObstacLayer主要处理机器人移动过程中产生的障碍物信息。
InflationLayer主要处理机器人导航地图上的障碍物信息膨胀(让地图上的障碍物比实际障碍物的大小更大一些),尽可能使机器人更安全的移动。


costmap在mapUpdateLoop线程中执行更新地图的操作,每个层的工作流程如下:


(1)StaticLayer工作流程


这里写图片描述


上图是StaticLayer的工作流程,updateBounds阶段将更新的界限设置为整张地图,updateCosts阶段根据rolling参数(这个参数是什么意思)(是否采用滚动窗口)设置的值,如果是,那静态地图会随着机器人移动而移动,则首先要获取静态地图坐标系到全局坐标系的转换,再更新静态地图层到master map里。


(2)ObstacleLayer工作流程


这里写图片描述


上图是ObstacleLayer的工作流程,updateBounds阶段将获取传感器传来的障碍物信息经过处理后放入一个观察队列中,updateCosts阶段则将障碍物的信息更新到master map。


(3)inflationLayer工作流程


这里写图片描述


上图是inflationLayer的工作流程,updateBounds阶段由于本层没有维护的map,所以维持上一层地图调用的Bounds值(处理区域)。updateCosts阶段用了一个CellData结构存储master map中每个grid点的信息,其中包括这个点的二维索引和这个点附近最近的障碍物的二维索引。改变每个障碍物CELL附近前后左右四个CELL的cost值,更新到master map就完成了障碍物的膨胀。

上面具体过程还是要查看原版的code具体形式。

--------------------- 本文来自 月黑风高云游诗人 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/lqygame/article/details/71270858?utm_source=copy

<think>嗯,用户让我详细介绍一下Nav2怎么用,输入和输出是什么。我需要先回想一下Nav2的基本概念。Nav2是ROS 2中的导航框架,主要用于移动机器人的路径规划和避障。用户可能是刚开始接触ROS或者机器人导航,可能需要从基础开始解释。 首先,我应该概述Nav2的用途,比如它在自主导航中的作用,包括SLAM、路径规划、控制等模块。然后,输入和输出部分需要分清楚。输入可能包括传感器数据(如激光雷达、摄像头)、初始位姿、目标位姿,以及地图信息。输出可能包括速度命令、路径信息、导航状态等。 用户可能想知道具体如何配置和使用Nav2,比如需要的启动文件、参数配置,以及如何与自己的机器人集成。可能需要提到AMCL(定位)、控制器、规划器、恢复行为等组件。还要考虑输入输出的具体话题名称,比如cmd_vel发布速度,订阅的传感器话题如scan或odom。 另外,用户可能对Nav2的工作流程感兴趣,比如从启动各节点到发送目标点,再到执行路径规划和避障的过程。需要解释行为树的作用,以及如何通过Action接口发送目标。 可能还需要提到常用的工具,如RViz中的Nav2插件,用于设置目标点和监控状态。还要注意不同传感器的适配,比如如果使用RGB-D摄像头,点云数据的处理。 用户可能遇到的问题包括如何正确配置机器人URDF,设置TF树,处理传感器数据的坐标系,以及调试导航中的常见问题。但用户的问题主要是输入输出和使用方法,所以可能需要保持重点,不过于深入细节。 最后,总结Nav2的输入输出,并给出一个简单的使用示例,帮助用户理解整体流程。需要确保语言清晰,结构合理,避免专业术语过多,但又要准确。</think>Nav2 是 ROS 2 中用于移动机器人自主导航的核心框架,继承自 ROS 1 的 `move_base`,但功能更强大且模块化。它支持路径规划、避障、恢复行为等任务,适用于轮式机器人、无人车等移动平台。以下是 Nav2 的核心使用方法和输入/输出介绍: --- ### **一、Nav2 的核心功能模块** 1. **全局路径规划**(如 NavFn、Smac Planner) 2. **局部路径规划/控制**(如 DWB、MPC Controller) 3. **定位**(通常与 AMCL 或 SLAM 结合) 4. **代价地图**(处理障碍物和环境信息) 5. **行为树**(协调导航流程和异常处理) --- ### **、输入(Inputs)** Nav2 需要多种传感器和系统数据作为输入: 1. **传感器数据**: - **激光雷达(Lidar)**:通过 `/scan` 话题发布 `sensor_msgs/LaserScan` 消息。 - **深度相机/RGB-D**:通过 `/depth/image` 或点云话题发布数据。 - **里程计(Odometry)**:通过 `/odom` 话题发布 `nav_msgs/Odometry` 消息。 2. **地图数据**: - **静态地图**:通过 `/map` 话题发布 `nav_msgs/OccupancyGrid`(通常由 SLAM 生成)。 3. **TF 变换**: - 机器人坐标系(如 `base_link`)与传感器、地图间的坐标变换(通过 TF2 系统)。 4. **目标指令**: - **导航目标**:通过 `NavigateToPose` Action 接口发送目标位姿(`geometry_msgs/PoseStamped`)。 - **通过 RViz 交互**:使用 `rviz2` 的 Nav2 插件手动指定目标。 --- ### **三、输出(Outputs)** 1. **控制指令**: - **速度命令**:通过 `/cmd_vel` 话题发布 `geometry_msgs/Twist` 消息,控制机器人移动。 2. **路径信息**: - **全局路径**:通过 `/plan` 话题发布 `nav_msgs/Path`。 - **局部路径**:通过 `/local_plan` 发布优化后的路径。 3. **状态反馈**: - **导航状态**:通过 `BehaviorTree` 日志或 `/navigation_status` 话题反馈当前状态(如规划中、避障、恢复行为等)。 4. **可视化信息**: - **代价地图**:通过 `/global_costmap` 和 `/local_costmap` 发布环境障碍信息。 --- ### **四、使用流程示例** 1. **启动 Nav2**: ```bash ros2 launch nav2_bringup bringup_launch.py ``` 需配置参数文件(如 `nav2_params.yaml`)定义规划器、控制器、代价地图等参数。 2. **发送目标**: - **通过代码**:调用 `NavigateToPose` Action 接口。 - **通过 RViz**:使用 `2D Goal Pose` 工具点击地图指定目标。 3. **监控过程**: - 在 RViz 中实时查看全局/局部路径、代价地图和机器人位姿。 - 通过日志或话题监控导航状态。 --- ### **五、关键配置文件** 1. **行为树 XML**:定义导航流程逻辑(如重试策略、超时处理)。 2. **代价地图参数**:设置障碍物膨胀半径、传感器滤波等。 3. **控制器参数**:调整速度、加速度约束和路径跟踪精度。 --- ### **六、调试与优化** - **常见问题**:TF 坐标错误、传感器数据延迟、代价地图配置不当。 - **工具**:使用 `ros2 topic echo`、`rviz2` 和 `nav2_lifecycle_manager` 调试数据流和状态。 Nav2 的灵活性允许高度定制化,可通过插件机制替换规划器/控制器算法(如 RRT*、TEB 等),是构建复杂导航系统的核心工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值