原创博客,转载请注明出处:http://write.blog.csdn.net/postlist
除了直线,在激光雷达获取的数据中,最重要的就是圆弧了,圆弧的位置确定本生没有直线的精度高,
因此不适合用作定位的基准,但是机器人在执行动作时,需要确定圆弧的位置,或则根据圆弧确定目标是
什么或者目标的位置。
圆弧的检测包括圆弧的位置(x,y)和大小r,常用的方法包括Hough变换和最小二乘法拟合。
一般圆弧位置检测的精度比较低,不能作为定位的标准,不过可以确定机器人和目标之间的位置。
1、Hough变换
圆弧检测之前都需要对数据进行分割,将一系列的点分割成不同的区域,然后计算圆弧的位置。Hough变换
不需要知道某区域是否有圆弧,以类似于投票的机制,某参数获得的票数越多,则存在圆弧的可能性越大,
大于某阈值时,则可以认为该处存在圆弧。
x - a = r*cos(theta)
y - b = r*sin(theta)
对于每一个点x y,有无数个点满足上式,即有无数个圆在经过该点的,每个圆对应一组(a,b,r)参数,设立一
个票箱,里面有所有可能的(a,b,r)参数,当某组参数出现一次,就将该票箱中的票数加1,所有的点都扫描之
后,查看票箱,票数最多的点即是圆出现概率最大的情况。此时应该设定一个阈值,如果最多的票数小于该阈值,
则认为不存在圆,否则认为有圆存在。
//这是一个简化的Hough圆算法,假设半径已知的情况,如果想看完整的Hough圆变换,查看另一篇博客:
http://blog.csdn.net/renshengrumenglibing/article/details/7250146
- int HoughArc(int X[] , int Y[] , int Cnt ,int r, ArcPara * Arc){
- vector<iPoint>center;
- vector<int>VoteCnt;
- double theta;
- int a,b;
- int minA,maxA,minB,maxB;
- int VotedFlag = 0;
- double deltaTheta = PI/180;//间隔1度
- double startAngle = 150.0*PI/180;
- double endAngle = PI*2 + PI/6;
- center.clear();
- VoteCnt.clear();
- minA = maxA = X[0] - r;
- minB = maxB = X[0]; //theta = 0
- //计算a,b的最小和最大值
- for (int i = 0; i < Cnt;i++)
- {
- for (theta = startAngle; theta < endAngle;theta += deltaTheta)
- {
- a = (int)(X[i] - r*cos(theta) + 0.5);
- b = (int)(Y[i] - r*sin(theta) + 0.5);
- if (a > maxA)
- {
- maxA = a;
- }else if (a < minA)
- {
- minA = a;
- }
- if (b > maxB)
- {
- maxB = b;
- }else if (b < minB)
- {
- minB = b;
- }
- }
- }
- //确定a,b的范围之后,即确定了票箱的大小
- int aScale = maxA - minA + 1;
- int bScale = maxB - minB + 1;
- int *VoteBox = new int[aScale*bScale];
- //VoteBox初始化为0
- for (int i = 0; i < aScale*bScale;i++)
- {
- VoteBox[i] = 0;
- }
- //开始投票
- for (int i = 0; i < Cnt;i++)
- {
- //printf("%d ",i);
- for (theta = startAngle; theta < endAngle;theta += deltaTheta)
- {
- a = (int)(X[i] - r*cos(theta) + 0.5);
- b = (int)(Y[i] - r*sin(theta) + 0.5);
- VoteBox[(b - minB)*aScale + a - minA] = VoteBox[(b - minB)*aScale + a - minA] + 1;
- }
- }
- //筛选票箱
- int VoteMax = 0;
- int VoteMaxX,VoteMaxY;
- for (int i = 0; i < bScale ;i++)
- {
- for (int j = 0; j < aScale ;j++)
- {
- if (VoteBox[i*aScale + j] > VoteMax)
- {
- VoteMax = VoteBox[i*aScale + j];
- VoteMaxY = i;
- VoteMaxX = j;
- }
- }
- }
- int Count = 0;
- printf("VoteMax: %d",VoteMax);
- for (int i = 0; i < bScale ;i++)
- {
- for (int j = 0; j < aScale ;j++)
- {
- if (VoteBox[i*aScale + j] >= VoteMax)
- {
- Count++;
- }
- }
- }
- printf(" %d \n",Count);
- //释放内存
- delete [] VoteBox;
- if (VoteMax > 3)
- {
- Arc->center.x = VoteMaxX + minA;
- Arc->center.y = VoteMaxY + minB;
- Arc->r = r;
- return 1;
- }else {
- return 0;
- }
- return 1;
- }
2、最小二乘法拟合
最小二乘法拟合则需要先判定是否是圆弧,是圆弧才能进行拟合,否则拟合的结果肯定是不准的。
但是目前直线的判定可以通过多边形拟合寻角点、拟合后看个点与直线距离等方法来判定,圆弧并没有
很好的判定方法,起码我目前是没有发现的。
最新代码下载:http://download.csdn.net/detail/renshengrumenglibing/5100757