四、肿瘤全基因组学体细胞点突变特征(The repertoire of mutational signatures in human cancer)

全文链接

一、肿瘤突变特征:碱基置换及插入、缺失突变

单碱基置换(49种特征类型,single-base-substitution,SBS)
双碱基置换(11种特征类型,doublet-base-substitution,DBS)
多碱基置换(4种特征类型,clustered-base-substitution,CBS)
小的插入、缺失突变(17种特征类型,small insertion-and-deletion,small indels)

CNS-GBM SBS ≈ 10 mb;DBS ≈ 0.01 mb;Indels ≈ 0.3 mb
在这里插入图片描述

二、单碱基置换、双碱基置换及小的插入、缺失突变概况

单碱基置换(96种类型,49种特征类型,single-base-substitution,SBS)
双碱基置换(78种类型,11种特征类型,doublet-base-substitution,DBS)
多碱基置换(4种特征类型,clustered-base-substitution,CBS)
小的插入、缺失突变(83种类型,17种特征类型,small insertion-and-deletion,small indels)

SBS 有六种突变,考虑到突变所占比重不同,理论上有 C 6 1 C_{6}^{1} C

<think>好的,我现在需要帮助用户解决如何使用免疫组库测序数据注释未标注参考基因组中的VDJ区域的问题。首先,我需要回忆一下免疫组库测序(Repertoire Sequencing, Rep-Seq)的基本概念和应用。免疫组库测序主要针对T细胞和B细胞的受体多样性,这些受体的VDJ区域具有高度变异性,因此在参考基因组中可能未被充分注释。 用户提到的是未注释的参考基因组,所以可能需要从头注释或利用现有工具进行预测。根据我的知识,常见的工具包括IMGT/HighV-QUEST、MiXCR、IgBLAST等。不过,用户可能需要更具体的流程,包括数据预处理、比对、注释等步骤。 首先,数据预处理步骤可能包括质量控制、去除接头和低质量reads。例如,使用FastQC和Trimmomatic。然后,比对到参考基因组,但这里的问题是参考基因组没有注释VDJ区域,所以可能需要先识别这些区域。 接下来,可能需要使用专门的工具来组装免疫受体序列。例如,MiXCR可以处理原始测序数据,进行组装和注释,即使参考基因组中缺乏注释。它能够识别V、D、J基因片段以及CDR3区域。另外,IMGT数据库提供了标准的免疫受体基因参考,用户可能需要将组装后的序列与IMGT数据库进行比对,以确定具体的基因片段。 此外,如果参考基因组未注释,可能需要从头预测基因结构。工具如TRUST4可以用于从头组装TCR或BCR的序列,适用于没有参考的情况。TRUST4能够从RNA-seq数据中提取免疫受体转录本并进行注释。 用户的问题还涉及到如何利用这些工具的具体流程。因此,可能需要分步骤说明:数据预处理、序列组装、比对到IMGT数据库或自定义数据库、注释VDJ区域等。 另外,需要考虑的是,如果参考基因组中完没有VDJ区域的注释,可能需要构建一个自定义的数据库,包含已知的V、D、J基因片段,然后将测序数据比对到这个数据库上。或者使用工具如IgBLAST,它允许用户提供自定义的数据库进行比对。 还需要注意可能的挑战,比如序列的高度多样性导致比对困难,或者参考基因组中存在gap区域影响注释结果,这可能需要参数调整或使用更灵敏的算法。例如,引用[2]提到原核基因组的分析中可能存在由于密码子使用或gap区导致的错误,类似的问题可能在免疫组库分析中出现,因此需要注意工具的参数设置。 最后,验证注释结果的准确性可能需要通过已知的阳性对照或实验验证,比如PCR验证特定VDJ重排的存在。 总结步骤可能如下: 1. 数据预处理:质控、去冗余。 2. 使用MiXCR或TRUST4进行序列组装和初步注释。 3. 比对到IMGT数据库或自定义数据库进行基因片段识别。 4. 使用IgBLAST或类似的工具进行详细注释。 5. 结果验证和调整参数以优化准确性。 需要确保推荐的每个工具都有文献或广泛使用的基础,比如引用[3]提到的GATK用于变异检测,但免疫组库可能需要不同的工具。同时,用户可能需要整合多个工具的结果以提高准确性。</think>### 免疫组库测序数据注释未标注参考基因组VDJ区域的步骤 1. **数据预处理** 使用`FastQC`和`Trimmomatic`进行质量控制,去除低质量reads和接头序列。若数据包含UMI(唯一分子标识符),需使用`UMI-tools`去重以提高准确性[^1]。 2. **VDJ序列组装与注释** - **工具推荐**: - **MiXCR**:支持直接从原始测序数据中提取并组装VDJ序列,即使参考基因组未注释相关区域。其核心命令为: ```bash mixcr analyze shotgun --species hs \ input_R1.fastq input_R2.fastq output ``` - **TRUST4**:适用于从头组装TCR/BCR序列,无需依赖参考基因组的注释。示例命令: ```bash TRUST4 -b input.bam -o output -f trust4_annotation.fa ``` - 输出结果包括V/D/J基因类型、CDR3序列及克隆丰度。 3. **比对至参考数据库** 将组装结果与`IMGT`数据库(免疫遗传学权威数据库)进行比对,确定基因片段类型: ```bash igblastn -germline_db_V imgt_v.fasta -germline_db_J imgt_j.fasta \ -query output.fasta -outfmt 7 ``` 若参考基因组未注释,可结合`IMGT`的基因坐标信息,通过`BEDTools`将注释映射到目标基因组[^2]。 4. **自定义数据库构建(可选)** 若目标物种的VDJ基因未收录在公共数据库中: - 从已发表的文献或相近物种中收集VDJ基因序列。 - 使用`MAFFT`进行多序列比对,构建物种特异性数据库。 - 通过`Bowtie2`或`BWA`将测序数据比对到自定义库。 5. **注释优化与验证** - 使用`IgBLAST`进行更精细的注释,调整参数(如`-num_alignments_V`)以提高灵敏度[^3]。 - 通过`Blastn`验证CDR3区域的保守性,或实验验证(如Sanger测序)。 --- ### 工具与注意事项 - **关键工具**: | 工具 | 用途 | 适用场景 | |----------|-------------------------------|-------------------------| | MiXCR | 端到端VDJ注释 | 高通量数据、快速分析 | | TRUST4 | 从头组装 | 无参考基因组或复杂样本 | | IgBLAST | 精细化比对 | 验证和细节调整 | - **挑战与解决**: - **高变异性**:使用更宽松的比对参数(如`MiXCR`中`--align '-OsaveOriginalReads=true'`)。 - **基因组gap区**:结合长读长测序(如PacBio)填补gap,提升注释连续性。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dr_yingli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值