单基因分析 —— 在线数据库使用
介绍
对于单个基因,我们可以分析些什么呢?
是癌与正常的差异表达,还是高低表达的生存差异,亦或是与某些特征基因之间的表达相关性呢?
不只,我们能做的不仅仅只有这些。
下面我们将通过一系列的文章来详细的介绍一下单个基因可以做哪些分析。
首先要选择一个兴趣基因,选用哪个基因呢?选一个研究比较多,非常著名的癌症相关基因 TP53
,这个基因涉及的数据比较多,分析起来比较方便。
首先来介绍点简单的,使用数据库检索单基因的信息。
数据库检索
TCGA
TCGA
数据比较全,所以在线分析网站比较多,我们主要列举其中广泛使用的几个。
TIMER
TIMER2 网站主要提供了基因表达、CNV
、突变以及临床数据的分析,还是比较全的。
还有一个比较有特色的功能,可以分析基因与免疫细胞浸润水平之间的相关性,有很多解卷积的算法所计算出来的不同类型的免疫细胞浸润水平。
网站访问比较慢,可能需要试试翻墙。
基因与免疫细胞浸润水平
点击 Immune
分析模块,选择需要检索的基因以及想要计算与哪些免疫细胞浸润水平的相关性,然后提交即可。也可以选择是否根据肿瘤细胞的纯度进行相关性的矫正,默认是选中的。
分析完后,会返回一个表格。表示不同癌症类型中,目标基因与对应免疫细胞浸润水平的相关性,会展示不同算法的计算结果。
点击其中某个值,会弹出一个窗口,显示基因表达与肿瘤纯度及免疫细胞浸润水平的相关性散点图。
基因组变异与免疫细胞浸润水平
类似地,可以根据基因是否突变或拷贝数变异分组,并比较不同分组之间免疫细胞浸润水平的差异是否具有显著性
- 突变
- 拷贝数变异
右侧结果图展示泛癌中基因的基因组变异情况,下方的表格展示分组之间的 logFC
。
点击其中的值,可以看到具体分组之间的差异
免疫细胞浸润水平与生存分析
Outcome
可以分析基因表达与免疫细胞浸润水平及临床信息的多变量 Cox
回归
点击结果表中的值
Z-score
值可以看到在某一个癌症中,多分组 K-M
生存曲线(高低表达与高低浸润水平之间的组合)
基因在泛癌中的表达
在 Exploration
中选择 Gene_DE
可以查看基因在泛癌中癌和正常的表达情况。
这里有一个问题,它将配对的癌症和正常样本都放进去检验了ÿ