单细胞测序数据分析——细胞通讯 CellChat

本文介绍了CellChat在单细胞测序数据分析中的应用,包括创建cellchat对象、推断配受体通讯网络及网络可视化。通过计算和可视化细胞间的通讯,展示了在配受体和信号通路水平上的细胞通讯网络,并提供了错误处理建议。
摘要由CSDN通过智能技术生成

一、CellChat介绍

特别好的文章:CellChat细胞通讯分析(上)--文献解读 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/525115168

 CellChat细胞通讯分析(中)--实操代码(单个样本) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/525365897

基本流程: 

cellchat的导入的数据分为两个部分:标准化的矩阵data和细胞分组信息mata,data储存的是基因表达数据,行名是基因,列名是细胞。meta储存的是细胞标签,行名是细胞名 ,记住这个信息,可以方便于分析的时候取子集。

二、基本流程

(一)创建cellchat对象

#首先得清空环境
rm(list = ls())
setwd("")
BiocManager::install("sqjin/CellChat")#下载cellchat,可能需要在R里进行,不太好下载
library(CellChat)
library(patchwork)
library(ggalluvial)
library(igraph)
library(dplyr)
#需要安装rtools才能运行
options(stringsAsFactors = FALSE) #输入数据不自动转换成因子(防止数据格式错误)
options(futrue.globlas.Maxsize=2*1024**3)
#设置硬件参数,8线程
suppressWarnings(suppressMessages(future::plan("multiprocess", workers = 8)))

1.数据下载和读取

#下载数据
#win+r wmic cpu get numberOfLogicalProcessors
#load(url("https://ndownloader.figshare.com/files/25950872"))#读取示例数据集
#View(data_humanSkin)
#saveRDS(data_humanSkin,'data_humanSkin.rds')
#读取数据,这个数据必须要由两个部分组成,1.标准化的矩阵data.2.细胞分组信息meta
data_humanSkin <- readRDS('data_humanSkin.rds')
class(data_humanSkin)
## [1] "list"
#示例数据:来源于人类皮肤
#作者发表文献 #https://www.nature.com/articles/s41467-021-21246-9.pdf

2.取子集进行分析

data.input <- data_humanSkin$data # normalized data matrix
meta <- data_humanSkin$meta # a dataframe with rownames containing cell mata data
unique(meta$condition)
## [1] "LS" "NL"
cell.use <- rownames(meta)[meta$condition == "LS"] # 按指定的变量提取细胞
data.input <- data.input[, cell.use]#取出对应细胞,也就是说,data的列名是meta的行名
meta = meta[cell.use, ]#取出对应细胞的meta信息
unique(meta$labels)#看meta中储存的细胞注释信息,稍后用它作为分组依据

3.创建cellchat对象

cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")
#创建celllchat对象,group.by指定通讯间的对象,用meta中的注释作为分组依据
cellchat <- addMeta(cellchat, meta = meta)
cellchat <- setIdent(cellchat, ident.use 
非常好的问题!首先,你需要将单细胞测序数据导入到R语言中。这可以通过使用R语言中的一些常见包来实现,例如Seurat、Scanpy或scater等。这些包提供了用于处理单细胞测序数据的函数和方法。 以下是一个简单的示例代码,展示了如何使用Seurat包将单细胞测序数据导入到R语言中: ``` library(Seurat) # 从10x Genomics下载单细胞测序数据 data <- Read10X(data.dir = "path/to/10x/data") # 创建Seurat对象 seurat_obj <- CreateSeuratObject(counts = data) # 进行数据质量控制 seurat_obj <- FilterCells(object = seurat_obj, min.cells = 3, min.features = 200) # 进行规范化和批次效应校正 seurat_obj <- NormalizeData(object = seurat_obj, normalization.method = "LogNormalize", scale.factor = 10000) seurat_obj <- FindVariableFeatures(object = seurat_obj, selection.method = "vst", nfeatures = 2000) seurat_obj <- ScaleData(object = seurat_obj, features = rownames(seurat_obj), vars.to.regress = "batch") # 进行聚类和降维 seurat_obj <- RunPCA(object = seurat_obj, features = VariableFeatures(object = seurat_obj)) seurat_obj <- FindNeighbors(object = seurat_obj, dims = 1:10) seurat_obj <- FindClusters(object = seurat_obj, resolution = 0.5) # 可视化结果 DimPlot(object = seurat_obj, reduction = "umap", group.by = "ident") ``` 这段代码将单细胞测序数据读入到R语言中,并使用Seurat包中的函数对其进行了质量控制、规范化、批次效应校正、聚类和降维等处理,最后可视化了聚类结果。 希望这个例子可以帮到你!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值