一、CellChat介绍
特别好的文章:CellChat细胞通讯分析(上)--文献解读 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/525115168
CellChat细胞通讯分析(中)--实操代码(单个样本) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/525365897
基本流程:
cellchat的导入的数据分为两个部分:标准化的矩阵data和细胞分组信息mata,data储存的是基因表达数据,行名是基因,列名是细胞。meta储存的是细胞标签,行名是细胞名 ,记住这个信息,可以方便于分析的时候取子集。
二、基本流程
(一)创建cellchat对象
#首先得清空环境
rm(list = ls())
setwd("")
BiocManager::install("sqjin/CellChat")#下载cellchat,可能需要在R里进行,不太好下载
library(CellChat)
library(patchwork)
library(ggalluvial)
library(igraph)
library(dplyr)
#需要安装rtools才能运行
options(stringsAsFactors = FALSE) #输入数据不自动转换成因子(防止数据格式错误)
options(futrue.globlas.Maxsize=2*1024**3)
#设置硬件参数,8线程
suppressWarnings(suppressMessages(future::plan("multiprocess", workers = 8)))
1.数据下载和读取
#下载数据
#win+r wmic cpu get numberOfLogicalProcessors
#load(url("https://ndownloader.figshare.com/files/25950872"))#读取示例数据集
#View(data_humanSkin)
#saveRDS(data_humanSkin,'data_humanSkin.rds')
#读取数据,这个数据必须要由两个部分组成,1.标准化的矩阵data.2.细胞分组信息meta
data_humanSkin <- readRDS('data_humanSkin.rds')
class(data_humanSkin)
## [1] "list"
#示例数据:来源于人类皮肤
#作者发表文献 #https://www.nature.com/articles/s41467-021-21246-9.pdf
2.取子集进行分析
data.input <- data_humanSkin$data # normalized data matrix
meta <- data_humanSkin$meta # a dataframe with rownames containing cell mata data
unique(meta$condition)
## [1] "LS" "NL"
cell.use <- rownames(meta)[meta$condition == "LS"] # 按指定的变量提取细胞
data.input <- data.input[, cell.use]#取出对应细胞,也就是说,data的列名是meta的行名
meta = meta[cell.use, ]#取出对应细胞的meta信息
unique(meta$labels)#看meta中储存的细胞注释信息,稍后用它作为分组依据
3.创建cellchat对象
cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")
#创建celllchat对象,group.by指定通讯间的对象,用meta中的注释作为分组依据
cellchat <- addMeta(cellchat, meta = meta)
cellchat <- setIdent(cellchat, ident.use