RGB 色彩空间是一种被广泛接受的色彩空间,但是该色彩空间过于抽象,我们不能够直接通过其值感知具体的色彩。
我们更习惯使用直观的方式来感知颜色,HSV 色彩空间提供了这样 的方式。
通过 HSV色彩空间,我们能够更加方便地通过色调、饱和度和亮度来感知颜色。 其实,除了 HSV 色彩空间,我们讨论的其他大多数色彩空间都不方便人们对颜色进行理解和解释。例如,现实中我们根本不可能用每种颜料的百分比(RGB
色彩空间)来形容一件衣服的颜色。
HSV 色彩空间从心理学和视觉的角度出发,提出人眼的色彩知觉主要包含三要素:
H:色调(Hue,也称为色相)。
S:饱和度(Saturation)。
V:亮度(Value)。
1.色调H
在 HSV 色彩空间中,色调 H 的取值范围是[0,360]。8 位图像内每个像素点所能表示的灰度级有 28=256 个,所以在 8 位图像内表示 HSV 图像时,要把色调的角度值映射到[0,255]范围内。
在 OpenCV 中,可以直接把色调的角度值除以 2,得到[0,180]之间的值,以适应 8 位二进制(256 个灰度级)的存储和表示范围。
在 HSV 空间中,色调值为 0 表示红色,色调值为 300 表示品红色,具体如表 4-3 所示。
根据上述分析可知,每个色调值对应一个指定的色彩,而与饱和度和亮度无关。
在 OpenCV中,将色调值除以 2 之后,会得到如表 4-4 所示的色调值与对应的颜色。
确定值范围后,就可以直接在图像的 H 通道内查找对应的值,从而找到特定的颜色。
例如,在 HSV 图像中,H 通道内值为 120 的像素点对应蓝色。查找 H 通道内值为 120 的像素点,找到的就是蓝色像素点。
在上述基础上,通过分析各种不同对象对应的 HSV 值,便可以查找不同的对象。
例如,通过分析得到肤色的 HSV 值,就可以直接在图像内根据肤色的 HSV 值来查找人脸(等皮肤)区域。
2.饱和度S
饱和度值的范围是[0,1],所以针对饱和度,需要说明以下