Dijkstra 算法分析

Dijkstra 算法是一种用于 计算加权图中最短路径 的算法,由 Edsger W. Dijkstra 在 1956 年提出。它适用于 非负权重图,广泛应用于路径规划、交通调度、网络路由等领域。

1. 算法核心思想

Dijkstra 算法的基本思路是:

  1. 设定一个 起始节点,初始化到所有其他节点的最短距离为无穷大(∞)。
  2. 使用一个 优先队列,每次选择当前已知的最短路径节点进行扩展。
  3. 更新邻居节点的最短路径,如果经过当前节点的路径更短,则更新。
  4. 重复上述过程,直到所有节点都被访问,或者找到目标节点的最短路径。

2. 适用范围

适用于

  • 无向图和有向图
  • 非负权重图
  • 单源最短路径问题(从一个起点到所有其他节点的最短路径)

不适用于

  • 存在负权重边的图(因为 Dijkstra 依赖于每次选取当前最短路径节点,负权边可能导致错误的路径选择)
  • 动态变化的图(如路径权重在执行过程中变化,需要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小海聊智造

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值