ORB-SLAM3技术详解(1)简介与论文解读

ORB-SLAM3是2020年由西班牙萨拉戈萨大学开源的SLAM系统,支持单目、立体、RGB-D相机,兼容多种相机模型。它实现了视觉与IMU的紧耦合,提高了稳定性与精度。系统引入了多地图管理和回环检测,确保在特征缺失环境下仍能有效运行。此外,ORB3是首个能重用所有历史信息的系统,提高了长期定位的准确性。实验表明,ORB3在各种传感器配置下表现优秀,尤其在双目惯性SLAM中,精度显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本信息

ORB-SLAM3是西班牙萨拉戈萨大学于2020年7月中旬开源的作品,与ORB-SLAM、ORB-SLAM2一脉相承,是一个能够使用单目、立体、RGB-D相机,兼容针孔及鱼眼相机模型进行视觉、视觉+惯导和多地图的综合性SLAM方案。

首先回顾一下历史:ORB-SLAM首次在2015年被提出,它的改进版ORB-SLAM2在2017年被提出,同年提出了ORB-SLAM-VI,时隔3年,ORB-SLAM3横空出世。好奇心的驱使下,本人偷瞄了一下论文,就在这里总结一下吧。

ORB3的主要创新:

  1. 实现了基于视觉与IMU的紧耦合SLAM系统,该系统完全依赖最大似然估计(即便在初始化阶段也是如此)。该方案无论在小型或者大型室内室外环境中都能够稳定的运行,并且比以前的方法精确了2-5倍。
  2. 多地图系统。依赖于一种新的位置识别和改进的回环检测,能够保证ORB3能够长时间在特征缺失环境下有效运行,当它跟丢时会重新启动一个新的地图,当检测到回环之后系统能够无缝拼接多个地图。
  3. 第一个能在算法阶段重用所有历史信息的系统,包含了共视帧之间的捆集调整(BA),即使共视帧在时间上相差甚远,甚至来自不同的地图。

实验表明,在所有的传感器配置中,ORB3与文献中最好的系统一样鲁棒,且更准确。双目惯性SLAM在EuRoC数据集上的平均精度为3.6厘米,在TUM-VI数据集(AR/VR场景的一个典型场景)中,快速手持式移动时的平均精度为9毫米

先观看一段演示视频https://www.zhihu.com/zvideo/1270859239145979904

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Techblog of HaoWANG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值