ROS下UVC免驱高速摄像头图像读取以及利用image_transport进行图像传递

网上可以买到很多高速摄像头模块,常见的就是这个ov2710模组,采用uvc免驱,号称在1080p 30fps,720p 60fps以及VGA 120fps。

值得是注意的是,这些高速模式都是在MJPG模式下运行,获取的并非标准的非压缩RGB图像。采用标准的opencv读取方式,如cvGrabFrame()+cvQueryFrame()或者VideoCapture::grab()+VideoCapture::retrieve()等,即使是在VGA分别率下也仅能获得30fps的数据。因此为了获得高速图像,就需要采用v4l2的库进行图像读取。

为了避免从头学起,推荐使用下面的ROS下的uvc摄像头读取程序,十分简单易用。

https://github.com/toNeptune9/Uvc_camera

下载后,将文件放到ROS的工作空间中,一般为~/catkin_ws/src/。

然后在工作空间的根目录下(~/catkin_ws)进行编译:

catkin_make

编译成功后,进入uvc_camera的launch目录下,对example.launch文件进行编辑:

在这里可以看到,这个launch文档的默认模式就是VGA 120fps,并且将图像发布到了example_node/compressed这个主题中,所以可以直接启动:

roslaunch uvc_camera example.launch

再用rostopic命令看一下example_node/compressed这个主题的数据刷新率,应该是99fps左右。

通过调节其他参数可以发现,改变曝光时间exposure_absolute可以影响刷新率,但99fps已经是能够运行的最快的刷新率了,增大exposure_absolute将导致刷新率降低,但是减小exposure_absolute已经不会提升刷新率了。

有一点需要注意,uvc_camera采用的是ROS中最常用的image_transport实现图像的传输,这个包可以发布三种不同的主题类型:

【1】sensor_msgs::image 用于非压缩的RGB图像传输

【2】sensor_msgs::compressedimage 用于JPEG或PNG格式的压缩图像的传输

【3】theora_image_transport/Packet 用于采用theora codec压缩的视频图像传输

上面的提到的uvc_camera包支持普通RGB图像、MJPG图像和YUV图像,而高速传输仅支持MJPG图像,所以这里为了获得高速图像,只能采用compressedimage格式。

然而有时为了处理图像,我么有需要把压缩后的图像还原成普通RGB图像。

下面提供了两种方法:

【1】第一种方法是直接在callback函数里使用cv::imdecode(cv::Mat(msg->data),1),这样就可以转换成cv::Mat格式的图像了。这种方法适用于尽在一个包里对图像进行处理。

【2】第二种方法采用的是republish这个包,这一方法可以一次为多个包提供数据转换:

republish compressed in:=/image_raw raw out:=/cam/image_raw

对于第二种方法,在launch文件中则可如下写:(编辑器的原因最开始的<和最后的/>被省略)

node name="republish0" type="republish" pkg="image_transport" output="screen" args="compressed in:=/image_raw raw out:=/cam/image_raw" 

对于双目应用,则可以通过改变node name,启动多个包,如下:

node name="republish0" type="republish" pkg="image_transport" output="screen" args="compressed in:=/left/camera raw out:=/left/camera/image_raw" 
node name="republish0" type="republish" pkg="image_transport" output="screen" args="compressed in:=/left/camera raw out:=/left/camera/image_raw" 

首先需要确定使用的摄像头型号,以确定对应的动程序。常见的摄像头动程序有V4L2、UVC等。在ROS中,常用的摄像头动程序为ros-kinetic-uvc-camera或ros-kinetic-gscam。 接下来,需要编写一个ROS节点,该节点可以从摄像头读取视频流,并将视频流转换为ROS message进行发送。可以使用ROS提供的image_transport和cv_bridge库进行图像数据的转换和传输。 以下是一个简单的示例代码,假设我们使用的是USB摄像头并且已安装好相应的动程序: ```cpp #include <ros/ros.h> #include <image_transport/image_transport.h> #include <cv_bridge/cv_bridge.h> #include <opencv2/highgui/highgui.hpp> int main(int argc, char** argv) { ros::init(argc, argv, "camera_node"); ros::NodeHandle nh; // 创建一个image_transport对象 image_transport::ImageTransport it(nh); // 创建一个Publisher,用于发送图像消息 image_transport::Publisher pub = it.advertise("camera/image", 1); // 打开摄像头 cv::VideoCapture cap(0); if(!cap.isOpened()) { ROS_ERROR("Failed to open camera!"); return -1; } // 设置图像分辨率 cap.set(CV_CAP_PROP_FRAME_WIDTH, 640); cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480); // 循环读取图像并发布 ros::Rate loop_rate(30); while(ros::ok()) { cv::Mat frame; cap >> frame; // 读取一帧图像 // 将opencv格式的图像转换为ROS message sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg(); // 发布图像消息 pub.publish(msg); ros::spinOnce(); loop_rate.sleep(); } return 0; } ``` 在上述代码中,我们使用了OpenCV库打开了摄像头,并在循环中不断读取图像并将其转换为ROS message进行发布。最后需要在launch文件中启动该节点,如下所示: ```xml <launch> <node name="camera_node" type="camera_node" pkg="my_package" output="screen"/> </launch> ``` 这样就完成了一个简单的摄像头采集系统的设计和开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值