1、微带线Microstrip
- 相同情况下,PCB板厚H越厚(影响很大):
- 特征阻抗越大(H↑ ==> ln()↑ ==> Z0↑)
- 传输延时几乎不变(与H无关)
- 寄生电感越大(H↑ ==> ln()↑ ==> L↑)
- 寄生电容越小(H↑ ==> ln()↑ ==> C↓)
- 相同情况下,PCB走线W越宽(影响较大):
- 特征阻抗越小(W↑ ==> ln()↓ ==> Z0↓)
- 传输延时几乎不变(与W无关)
- 寄生电感越小(W↑ ==> ln()↓ ==> L↓)
- 寄生电容越大(W↑ ==> ln()↓ ==> C↑)
- 相同情况下,PCB走线T越厚(影响很小):
- 特征阻抗越小(T↑ ==> ln()↓ ==> Z0↓)
- 传输延时几乎不变(与T无关)
- 寄生电感越小(T↑ ==> ln()↓ ==> L↓)
- 寄生电容越大(T↑ ==> ln()↓ ==> C↑)
- 相同情况下,信号频率越高:
- 特征阻抗越小
- 传输延时越小
- 寄生电感越小
- 寄生电容几乎不变
1.1、特征阻抗
1.2、传输延时
1.3、每inch寄生电容
1.4、每inch寄生电感
1.5、相互之间的关系
from math import *
H = 8.5
T = 1.2
W = 7
Er = 4.2
Z0 = (87/sqrt(Er+1.41))*log(5.98*H/(0.8*W+T))
Tp = 58.58*sqrt(Er+1.41)
C = 0.673*(Er+1.41)/log(5.98*H/(0.8*W+T))
L = 5.096*log(5.98*H/(0.8*W+T))
print(Z0)
print(Tp)
print(C)
print(L)
Si9000 | 公式计算 |
![]() | |
2、带状线Stripline
3、通孔VIA
3.1、寄生电容
过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2(inch),过孔焊盘的直径为D1(inch),PCB板的厚度为T(inch),板基材介电常数为εr,则过孔的寄生电容大小近似于:
举例来说,一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,板基材介电常数为4.4,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:
C=1.41×4.4×0.050×0.020/(0.032-0.020)=0.517pF
过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。这部分电容引起的上升时间变化量为:
T10-90=2.2C(Z0/2)=2.2×0.517x(50/2)=28.435ps
3.2、寄生电感
在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。
如果过孔的长度为h(inch),中心钻孔的直径为d(inch),我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:
从公式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:
L=5.08×0.050[ln(4×0.050/0.010)+1]=1.015nH
如果信号的上升时间是1ns,那么其等效阻抗大小为:
XL=πL/T10-90=3.19Ω
这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。