PCB寄生参数和特征阻抗

本文探讨了PCB设计中微带线Microstrip、带状线Stripline及通孔VIA的特征阻抗、传输延时、寄生电容和电感的变化规律,以及它们如何影响信号性能。通过实例计算,揭示了参数如线宽、线厚和过孔设计对电路性能的关键影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、微带线Microstrip

  • 相同情况下,PCB板厚H越厚(影响很大):
    • 特征阻抗越大(H↑  ==> ln()↑ ==> Z0↑)
    • 传输延时几乎不变(与H无关)
    • 寄生电感越大(H↑  ==> ln()↑ ==> L↑)
    • 寄生电容越小(H↑  ==> ln()↑ ==> C↓)
  • 相同情况下,PCB走线W越宽(影响较大):
    • 特征阻抗越小(W↑  ==> ln()↓ ==> Z0↓)
    • 传输延时几乎不变(与W无关)
    • 寄生电感越小(W↑  ==> ln()↓ ==> L↓)
    • 寄生电容越大(W↑  ==> ln()↓ ==> C↑)
  • 相同情况下,PCB走线T越厚(影响很小):
    • 特征阻抗越小(T↑  ==> ln()↓ ==> Z0↓)
    • 传输延时几乎不变(与T无关)
    • 寄生电感越小(T↑  ==> ln()↓ ==> L↓)
    • 寄生电容越大(T↑  ==> ln()↓ ==> C↑)
  • 相同情况下,信号频率越高:
    • 特征阻抗越小
    • 传输延时越小
    • 寄生电感越小
    • 寄生电容几乎不变

1.1、特征阻抗

Z_{0} = \frac{87}{\sqrt{\varepsilon _{r}+1.41}}\times ln(\frac{5.98H}{0.8W+T})---\Omega

1.2、传输延时

T_{p} = 58.58 \times \sqrt{\varepsilon_{r}+1.41}---ps/inch

1.3、每inch寄生电容

C = 0.673\times \frac{\varepsilon_{ r}+1.41}{ln(\frac{5.98H}{0.8W+T})} ---pF/inch

1.4、每inch寄生电感

L = 5.096\times ln(\frac{5.98H}{0.8W+T}) ---nH/inch

1.5、相互之间的关系

Z_{0} = \sqrt{\frac{L}{C}}

T_{p} = \sqrt{L \times C}

L = Z_{0}\times T_{p}

C = \frac{T_{p}}{Z_{0}}

Python计算

from math import *

H = 8.5
T = 1.2
W = 7
Er = 4.2

Z0 = (87/sqrt(Er+1.41))*log(5.98*H/(0.8*W+T))
Tp = 58.58*sqrt(Er+1.41)
C = 0.673*(Er+1.41)/log(5.98*H/(0.8*W+T))
L = 5.096*log(5.98*H/(0.8*W+T))

print(Z0)
print(Tp)
print(C)
print(L)

 

Si9000公式计算

Z_{0} = \frac{87}{\sqrt{\4.2+1.41}}\times ln(\frac{5.98\times 8.5}{0.8\times 7+1.2}) = 73.90\Omega

T_{p} = 58.58 \times \sqrt{4.2+1.41} = 138.75ps/inch

C = 0.673\times \frac{4.2+1.41}{ln(\frac{5.98\times 8.5}{0.8\times 7+1.2})} = 1.877 pF/inch

L = 5.096\times ln(\frac{5.98\times 8.5}{0.8\times 7+1.2}) = 10.25 nH/inch

2、带状线Stripline

3、通孔VIA

3.1、寄生电容

过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2(inch),过孔焊盘的直径为D1(inch),PCB板的厚度为T(inch),板基材介电常数为εr,则过孔的寄生电容大小近似于:

C= \frac{1.41\varepsilon _{r}TD_{1}}{D_{2}-D_{1}}---pF

举例来说,一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,板基材介电常数为4.4,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:

C=1.41×4.4×0.050×0.020/(0.032-0.020)=0.517pF

过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。这部分电容引起的上升时间变化量为:

T10-90=2.2C(Z0/2)=2.2×0.517x(50/2)=28.435ps

3.2、寄生电感

在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。

如果过孔的长度为h(inch),中心钻孔的直径为d(inch),我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:

L = 5.08\times h\left [ ln\left ( \frac{4h}{d} \right )+1 \right ]---nH

从公式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:

L=5.08×0.050[ln(4×0.050/0.010)+1]=1.015nH

如果信号的上升时间是1ns,那么其等效阻抗大小为:

XL=πL/T10-90=3.19Ω

这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值