矩阵理论| 基础:特征值与特征向量、代数重数/几何重数、相似对角化和Jordan标准型

特征值与特征向量

矩阵 A \mathbf A A的特征值与特征向量满足 A x = λ x \mathbf A\mathbf x=\lambda\mathbf x Ax=λx,即 ( A − λ I ) x = 0 (\mathbf A-\lambda\mathbf I)\mathbf x=0 (AλI)x=0,且 x ≠ 0 \mathbf x\neq0 x=0

  • 特征值 d e t ( A − λ I ) = 0 det(\mathbf A-\lambda\mathbf I)=0 det(AλI)=0的根,其中 p ( λ ) = d e t ( A − λ I ) p(\lambda)=det(\mathbf A-\lambda\mathbf I) p(λ)=det(AλI)特征多项式
    A \mathbf A A全体所有特征值也称为 A \mathbf A A,记为 λ ( A ) \lambda(\mathbf A) λ(A)
  • 特征向量 ( A − λ I ) x = 0 (\mathbf A-\lambda\mathbf I)\mathbf x=0 (AλI)x=0的非零解,可见特征向量可能充满一整个子空间,该子空间就是零空间 N ( A − λ I ) N(\mathbf A-\lambda\mathbf I) N(AλI),称为特征子空间

不同特征值对应的特征子空间的交为{0}

相关的小技巧:若 A \mathbf A A的特征值为 λ \lambda λ,则 A − k I \mathbf A-k\mathbf I AkI的特征值为 λ − k \lambda-k λk

代数重数与几何重数

首先注意,代数重数与几何重数的概念,都是针对某一个特征值 λ i \lambda_i λi而言的

n n n阶矩阵 A \mathbf A A的特征多项式写为 p ( t ) = det ⁡ ( A − t I ) = ( λ 1 − t ) β 1 ⋯ ( λ k − t ) β k p(t)=\operatorname{det}(A-t I)=\left(\lambda_{1}-t\right)^{\beta_{1}} \cdots\left(\lambda_{k}-t\right)^{\beta_{k}} p(t)=det(AtI)=(λ1t)β1(λkt)βk
其中, β 1 + β 2 + . . . β k = n \beta_1+\beta_2+...\beta_k=n β1+β2+...βk=n n n n阶多项式,有 n n n个根)

  • 特征值 λ i \lambda_i λi代数重数 β i \beta_i βi
    ps. 代数重数也可以定义为 β i = d i m [ N ( ( A − λ i I ) n ) ] \beta_i=dim[N((\mathbf A-\lambda_i\mathbf I)^n)] βi=dim[N((AλiI)n)],见特征值的代数重数与几何重数
  • 特征值 λ i \lambda_i λi几何重数为其特征子空间的维数,即 d i m [ N ( A − λ i I ) ] dim[N(\mathbf A-\lambda_i\mathbf I)] dim[N(AλiI)]

对于任一特征值 λ i \lambda_i λi几何重数<=代数重数

  • 当特征值有重根时,就可能有几何重数<代数重数,此时“缺少”特征向量,对应降维变换,并且矩阵无法相似对角化

相似对角化和Jordan标准型

  • 当所有特征值的几何重数=代数重数,有 d i m [ N ( A − λ 1 I ) ] + . . . + d i m [ N ( A − λ k I ) ] = n dim[N(\mathbf A-\lambda_1\mathbf I)]+...+dim[N(\mathbf A-\lambda_k\mathbf I)]=n dim[N(Aλ1I)]+...+dim[N(AλkI)]=n,矩阵可相似对角化
    可以用 n n n个线性无关的特征向量组成可逆矩阵 P \mathbf P P,使 A = P Λ P − 1 \mathbf A=\mathbf P\mathbf \Lambda\mathbf P^{-1} A=P1

此时, A \mathbf A A的特征向量可以给出 C n \mathbb{C}^{n} Cn空间的一组基
或者说, A \mathbf A A的所有特征子空间给出了整个空间的直和分解: N ( A − λ 1 I ) ⊕ ⋯ ⊕ N ( A − λ k I ) = C n N\left(A-\lambda_{1} I\right) \oplus \cdots \oplus N\left(A-\lambda_{k} I\right)=\mathbb{C}^{n} N(Aλ1I)N(AλkI)=Cn

实对称矩阵(n个正交的特征向量)、幂等矩阵(证明见后文)必然可以相似对角化

  • 更一般的,矩阵没有 n n n个线性无关的特征向量,则无法相似对角化,此时只能求Jordan标准型 J \mathbf J J,使 A = P J P − 1 \mathbf A=\mathbf P\mathbf J\mathbf P^{-1} A=PJP1
    此时仅满足 d i m [ N ( ( A − λ 1 I ) n ) ] + . . . + d i m [ N ( ( A − λ k I ) n ) ] = n dim[N((\mathbf A-\lambda_1\mathbf I)^n)]+...+dim[N((\mathbf A-\lambda_k\mathbf I)^n)]=n dim[N((Aλ1I)n)]+...+dim[N((AλkI)n)]=n(代数重数的定义2)

定义特征值 λ i \lambda_i λi广义特征向量 ( A − λ I ) n x = 0 (\mathbf A-\lambda\mathbf I)^n\mathbf x=0 (AλI)nx=0的非零解,
N ( ( A − λ i I ) n ) N((\mathbf A-\lambda_i\mathbf I)^n) N((AλiI)n)称为广义特征子空间(其维数=代数重数, β i = d i m [ N ( ( A − λ i I ) n ) ] \beta_i=dim[N((\mathbf A-\lambda_i\mathbf I)^n)] βi=dim[N((AλiI)n)]

那么,可以用 n n n个线性无关的广义特征向量组成可逆矩阵 P \mathbf P P,使 A = P J P − 1 \mathbf A=\mathbf P\mathbf J\mathbf P^{-1} A=PJP1,见Jordan 标准型-寻找广义特征向量
此时,广义特征子空间给出了整个空间的直和分解: N ( ( A − λ 1 I ) n ) ⊕ ⋯ ⊕ N ( ( A − λ k I ) n ) = C n N\left(\left(A-\lambda_{1} I\right)^{n}\right) \oplus \cdots \oplus N\left(\left(A-\lambda_{k} I\right)^{n}\right)=\mathbb{C}^{n} N((Aλ1I)n)N((AλkI)n)=Cn

例题:证明幂等矩阵一定可以相似对角化

对于幂等矩阵 P \mathbf P P P 2 = P \mathbf P^2=\mathbf P P2=P,幂等矩阵的特征值只可能为0和1(由 P x = λ x \mathbf P\mathbf x=\lambda\mathbf x Px=λx P 2 x = λ 2 x \mathbf P^2\mathbf x=\lambda^2\mathbf x P2x=λ2x可知)
另外, ( I − P ) \mathbf {(I-P)} (IP)也是幂等矩阵( ( I − P ) 2 = I − P \mathbf {(I-P)^2}=\mathbf {I-P} (IP)2=IP
因此有 N ( P n ) = N ( P ) N(\mathbf P^n)=N(\mathbf P) N(Pn)=N(P) N ( ( I − P ) n ) = N ( I − P ) N(\mathbf{(I-P)}^n)=N(\mathbf {I-P}) N((IP)n)=N(IP),由上面的知识,特征值0的代数重数等于几何重数,特征值1的代数重数也等于几何重数,故幂等矩阵一定可以相似对角化

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值