cartographer 代码思想解读(2)- 分支定界快速相关匹配
上节描述cartographer中算法中的相关匹配算法,为前端的scan-match,由于其初始位置有一定确定和分布性,故采用基本的暴力扫描方法。本节描述相关匹配一种快速实现,主要应用于loop-scan。回环检测为后端处理重要步骤,即检测当前位置是否曾经来过,即采用当前scan在历史中搜索是否匹配。故其搜索范围及其位置不确定性较大,故cartographer采用了分枝定界方法进行快速相关匹配。
分支界定基本原理
分支界定是计算机中一种快速求解的方法,其基本方法为将多个约束条件,拆分成多层。而顶层约束条件较少,下层逐渐增加条件,最后一层即支节点为最终结果,我们称之为分支。由于顶层的条件较少,故可得出N多个解,需要对每个解进行评分,并将最大的评分记录此节点,我们称之为上边界,即每层存储结果对应的评分均大于等于下层所有节点评分。我们可以初始一个下边界,即当前最好评分。每个真正评分应为最后一层支节点的评分,如果大于当前的最好评分,则更新,即更新下边界。
分支和边界基本说明,理论上均需要遍历到最后一个支节点才能求出真正解,如此与暴力匹配一致,并没有提高其性能。但由于有了边界后,当某一个节点评分小于当前最好评分,则其节点即以下所有之节点均无需考虑,即为剪枝,如此减少扫描范围。cartographer中在每一层中所有节点的评分也按照从大小排列,如果某节点评分小于当前最后评分(即下边界),则此节点以及此层以后所有节点均可裁剪。
盗一张图。

文字描述较为抽象,可参考他人多个的文档解释。
https://www.jianshu.com/p/9a8089cf7d3f
branch and bound(分支定界)算法
分枝定界图解
源码解读
代码目录:cartographer/mapping/internal/2d/scanmatching/fast_correlative_scan_matcher_2d
顶层函数
顶层函数包含两个
// 此匹配为全范围暴力匹配,无初始位置
bool FastCorrelativeScanMatcher2D::MatchFullSubmap(
const sensor::PointCloud& point_cloud, float min_score, float* score,
transform::Rigid2d* pose_estimate)
/*
input:
当前帧估计位置(里程计等提供的初始位置)
当前帧点云(即以激光雷达为坐标系的点云)
最小置信度
(grid在构造函数已经传递)
output:
置信度清单
匹配后输出位置
*/
bool FastCorrelativeScanMatcher2D::Match(
const transform::Rigid2d& initial_pose_estimate,
const sensor::PointCloud& point_cloud, const float min_score, float* score,
transform::Rigid2d* pose_esti

解析Cartographer中分支定界快速相关匹配算法,应用于回环检测,通过分层地图预处理和分支界定搜索,实现高效扫描匹配。
最低0.47元/天 解锁文章
272





