一、收益和风险的度量
1. 预期收益率 :资产或资产组合过去收益的算数平均数
收益率的波动情况:资产或资产组合过去收益率的方差或标注差
2. 单一风险资产的预期收益率和风险的度量
单一风险资产i的预期收益率:
收益率的波动情况:
3. 资产组合的预期收益率与风险的度量
资产组合是指两种或两种以上投资构成的资产头寸。以两种风险资产A、B为例,假设资产A初始投资权重为,收益率为
,资产B初始投资权重为
,收益率为
,投资组合的初始投资额为
,则投资组合的收益率为
为:
,其中
投资组合的方差为: ,
为资产A和资产B之间的相关系数。
当时,
,两个资产收益率之间的变化是完全正相关的。
当时,
,即
。
公式表明只要,资产组合的标准差就一定小于各风险资产标准差的加权平均。
由图可见,当时,分散投资具有降低风险的效用,且
越小,分散化投资降低风险的效果越明显,曲线的弯曲程度越明显。
当时,资产A与资产B完全负相关,
,此时资产组合的可行集为两条直线,投资组合的风险能够最大幅度地降低甚至消除。
二、马尔韦兹有效前沿
N种资产构建的资产组合可行集,可看成两种资产可行集的不断累加。当N趋近于无穷时,在直线的不断累加下,可行集就形成了区域。资产组合可行集的左侧边界称为 最小方差前沿。
三、资本配置线
假设投资者尽在风险资产组合与无风险资产之间进行配置,其中风险资产组合的期望收益率为,标准差为
,无风险资产的收益率为
,标准差为0。通过同时配置风险资产组合与无风险资产,投资者形成新的投资组合P,该投资组合的预期收益率记为
,标准差记为
,有:
由以上三式可以得出:
此时可得到一条以无风险利率为截距,且穿过点
的直线,这条直线为资本配置线。
左侧表示投资者将资本部分投到无风险资产中,剩下的投资到风险资产中,即
;右侧部分表示某一投资者借入无风险资本连同自有资本全部投入到风险资产中,即
最优资本配置线时由无风险点出发的多条射线中,与有效前沿相切的那条射线,切点M为最优风险组合,也叫市场组合。