功能富集分析 | GO| KEGG

写在前面

我们《复现SCI文章系列教程》专栏现在是免费开放,推出这个专栏差不多半年的时间,但是由于个人的精力和时间有限,只更新了一部分。后续的更新太慢了。因此,最终考虑后还是免费开放吧,反正不是什么那么神秘的东西。原本就是一个套路的文章,此外,这篇文章也相对比较简单。在此章节以前,还有一个WGCNA的分析,你若需要可以看**WGCNA分析 | 全流程分析代码**

目前全部开放链接:

  1. SCI文章复现 | GEO文章套路,数据下载和批次效应处理
  2. 差异分析和PPI网路图绘制教程

原付费:复现SCI文章系列教程文章

  1. 订阅《复现SCI文章系列教程》须知
  2. 复现SCI文章系列 | 第一篇文章复现:1. 文章讨论与文章分析套路讲解
  3. 2.1 材料与方法 (IF 7.3)
  4. 2.2 数据集下载 (IF 7.3)
  5. 2.3 数据去重和标准化(附送去批次效应)
  6. 2.4 差异分析
  7. 2.5 加权基因共表达分析(WGCNA)
  8. 2.6 PPI网络分析

本期推文内容

2.7.1 章节总结

在前的教程中,我们已经获得差异基因(2.4 差异分析)和获得与纤维化相关的模块基因。此教程,我们做功能富集分析。但是,此数据问题依旧是很大的影响因素,严重影响后续的分析。

2.7.2 文章结果内容

  1. GO和KEGG富集分析结果
  2. 分析结果图

2.7.3 取交集

根据文章分析流程,将DEGs和WGNCA分析获得的结果去交集,获得的交集基因进行后续分析。

在差异分析中,我们获得600多个DEGs,在WGCNA分析中,与纤维化相关的模块为“yellow”

共有200多个基因。

### R语言中的GOKEGG富集分析 #### 数据准备 为了在R中执行GOKEGG富集分析,数据通常需要经过预处理阶段。这涉及收集基因列表并将其转换成适合用于富集分析的形式。可以利用Excel来整理这些初步的数据文件[^1]。 #### 安装必要的包 要开始GOKEGG富集分析,在R环境中安装几个重要的库是必不可少的: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("clusterProfiler", "org.Hs.eg.db")) ``` #### 加载所需的库 一旦上述包被成功安装,下一步就是加载它们以便后续操作能够顺利进行: ```r library(clusterProfiler) library(org.Hs.eg.db) ``` #### 执行富集分析 下面是一个简单的例子展示如何使用`enrichGO()`函数来进行GO术语上的富集测试;对于KEGG路径,则可采用类似的逻辑调用相应的API接口如`enrichKEGG()`: ```r # 假设我们有一个差异表达基因(DEGs) ID 列表 deg_ids <- c("7089", "5643", ...) ego <- enrichGO(gene = deg_ids, universe = keys(org.Hs.eg.db, keytype="ENTREZID"), OrgDb = org.Hs.eg.db, ont = "BP", pAdjustMethod= "BH", qvalueCutoff = 0.05) ekg <- enrichKEGG(gene = deg_ids, organism = 'hsa', pAdjustMethod= "BH", qvalueCutoff = 0.05) ``` 以上代码片段展示了基本的工作流程,其中包含了设置参数以调整p值的方法(这里选择了Benjamini-Hochberg校正),以及指定显著性的阈值(q-value cutoff)。 #### 结果可视化 最后一步是对获得的结果进行解释和呈现。ClusterProfiler提供了多种绘图选项帮助理解所得结论: ```r dotplot(ego, showCategory=20) barplot(ego, showCategory=20) cnetplot(ego, categorySize='medium') ``` 通过这种方式,不仅可以直观地看到哪些生物过程受到了影响,还可以进一步探索不同类别之间的关系网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杜的生信筆記

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值