利用kalman滤波对点云数据进行处理实现多目标跟踪的算法:代码自己实现了KalmanMultiTracker,再推荐几个【https://blog.csdn.net/github_39611196/article/details/87988731】【https://blog.csdn.net/fly_wt/article/details/99404844】【https://blog.csdn.net/u011473714/article/details/88662714】,这一部分工作类似于ReID
3D激光数据实现单目标行人跟踪:过滤较远范围的点云数据(缩小搜索范围)之后,在特定的范围内进行聚类(欧式聚类),然后通过所有聚类类别的集合中,计算集合xyz轴上的长度,以此硬性区分行人,然后对没有检测到行人的帧通过上一帧行人的位置和速度(位置差)计算。最后得到行人的运动轨迹。
【智能驾驶中点云目标快速检测与跟踪】:这篇文章比起上面的简单方法,将之前模型预测的结果送入邻域搜索目标模块中,来加快目标检测的速度;检测到的点云集合得到距离机器人最近的外围点云然后拟合目标外轮廓,最后使用卡尔曼滤波假设人是匀加速运动模型,进行预测。
【三维点云场景动态目标检测跟踪与语义标注技术研究】:比较对题,但是太长,先不看
泡泡的文章
【泡泡一分钟】城市驾驶环境中使用道路环境进行车辆检测、追踪及行为分析
【泡泡一分钟】通过检测实现多传感器3D跟踪的端到端学习
【泡泡图灵智库】MaskFusion:实时多移动物体识别,跟踪和重建(arXiv)
【泡泡点云时空】PointRCNN:从点云中检测和生成3D目标的方案
【泡泡点云时空】多尺度多传感器深度融合的3D物体检测(ECCV-5)
【泡泡点云时空】三维目标检测算法汇总
《Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks》
【泡泡点云时空】PIXOR:基于点云的实时三维物体检测(CVPR2018-8)
【泡泡点云时空】用于从RGB-D数据进行3D物体检测的视锥点云网络(CVPR2018-11)
【泡泡图灵智库】VoxelNet:基于点云的端到端3D物体检测网络(CVPR)
【泡泡图灵智库】Complex-YOLO:一个用于实时点云3D目标检测的欧拉区域提议网络(arXiv)
【泡泡点云时空】LaserNet:一种用于自动驾驶的高效三维目标概率检测器