坐标变换(5)—用旋转轴和旋转角表示旋转

任何旋转,都可以用一个旋转轴 ω ^ \hat \omega ω^和一个旋转角 θ \theta θ来描述。

1. 坐标系的线速度和角速度

如上图,在旋转的刚体上,附加一个body frame { b } \{b\} {b},记为 { x ^ , y ^ , z ^ } \{\hat{x},\hat{y},\hat{z}\} {x^,y^,z^}。对于三个轴而言,绕着 ω ^ \hat \omega ω^旋转的轨迹为圆。当然,上述坐标轴 { x ^ , y ^ , z ^ } \{\hat{x},\hat{y},\hat{z}\} {x^,y^,z^} ω ^ \hat \omega ω^是在fixed frame { S } \{S\} {S}坐标系下的,下面将 ω ^ \hat \omega ω^记为 ω ^ s \hat \omega_s ω^s

绕着轴 ω ^ \hat \omega ω^的角速度为,
w s = w ^ θ ˙ (1) w_s=\hat{w}\dot{\theta} \tag{1} ws=w^θ˙(1)
运动的线速度记为 x ^ ˙ \dot{\hat{x}} x^˙,三个轴的线速度则为,
x ^ ˙ = w s × x ^ y ^ ˙ = w s × y ^ z ^ ˙ = w s × z ^ (2) \begin{aligned} \dot{\hat{x}}&=w_s \times \hat{x} \\ \dot{\hat{y}}&=w_s \times \hat{y} \\ \dot{\hat{z}}&=w_s \times \hat{z} \end{aligned} \tag{2} x^˙y^˙z^˙=ws×x^=ws×y^=ws×z^(2)
将三个轴的线速度统一写为,
R ˙ = [ w s × x ^ w s × y ^ w s × z ^ ] = w s × R (3) \dot{R}= \begin{bmatrix} w_s \times \hat{x} & w_s \times \hat{y} & w_s \times \hat{z} \end{bmatrix}=w_s \times R \tag{3} R˙=[ws×x^ws×y^ws×z^]=ws×R(3)
为了简化公式(3)中的叉乘,特引入了 [ ] [] []符号,将 w × R w \times R w×R可以记为矩阵的乘法 [ w ] R [w]R [w]R,其中 [ w ] [w] [w]的定义如下:
对于 R 3 \mathbb{R}^3 R3中的向量 x = [ x 1 x 2 x 3 ] x=\begin{bmatrix}x_1 & x_2 &x_3\end{bmatrix} x=[x1x2x3],定义 [ x ] [x] [x]为一个反对称矩阵,
[ x ] = [ 0 − x 3 x 2 x 3 0 − x 1 − x 2 x 1 0 ] (4) [x]=\left[\begin{array}{ccc} 0 & -x_{3} & x_{2} \\ x_{3} & 0 & -x_{1} \\ -x_{2} & x_{1} & 0 \end{array}\right]\tag{4} [x]=0x3x2x30x1x2x10(4)
[ x ] = − [ x ] T (5) [x]=-[x]^T \tag{5} [x]=[x]T(5)
上述所有 3 × 3 3 \times 3 3×3的反对称矩阵统称为 s o ( 3 ) so(3) so(3)小的。前面说过,旋转矩阵属于 S O ( 3 ) SO(3) SO(3)大的。下面有一个两者结合起来有趣的性质,假定 r i T r_i^T riT R R R的第 i i i行,即 r i r_i ri R T R^T RT的第 i i i列,则
R [ w ] R T = R [ w s × r 1 w s × r 2 w s × r 3 ] = [ r 1 T ( w s × r 1 ) r 1 T ( w s × r 2 ) r 1 T ( w s × r 3 ) r 2 T ( w s × r 1 ) r 2 T ( w s × r 2 ) r 2 T ( w s × r 3 ) r 3 T ( w s × r 1 ) r 3 T ( w s × r 2 ) r 3 T ( w s × r 3 ) ] = [ 0 − r 3 T w s r 2 T w s r 3 T w s 0 − r 1 T w s − r 2 T w s r 1 T w s 0 ] = [ R w s ] (6) \begin{aligned} R[w]R^T &= R\begin{bmatrix} w_s\times r_1 & w_s\times r_2 &w_s\times r_3 \end{bmatrix}\\ &= \begin{bmatrix} r_1^{T}(w_s\times r_1) & r_1^T(w_s\times r_2) & r_1^T (w_s\times r_3) \\ r_2^{T}(w_s\times r_1) & r_2^T(w_s\times r_2) & r_2^T (w_s\times r_3) \\ r_3^{T}(w_s\times r_1) & r_3^T(w_s\times r_2) & r_3^T (w_s\times r_3) \end{bmatrix} \\ &= \begin{bmatrix} 0 & -r_3^Tw_s & r_2^Tw_s\\ r_3^Tw_s & 0 &-r_1^Tw_s\\ -r_2^Tw_s&r_1^Tw_s&0 \end{bmatrix}\\ &=[Rw_s] \end{aligned} \tag{6} R[w]RT=R[ws×r1ws×r2ws×r3]=r1T(ws×r1)r2T(ws×r1)r3T(ws×r1)r1T(ws×r2)r2T(ws×r2)r3T(ws×r2)r1T(ws×r3)r2T(ws×r3)r3T(ws×r3)=0r3Twsr2Twsr3Tws0r1Twsr2Twsr1Tws0=[Rws](6)

对于(6)中矩阵中的 r 1 T ( w s × r 2 ) r_1^{T}(w_s\times r_2) r1T(ws×r2),是三个向量 r 1 , w s , r 2 r_1,w_s,r_2 r1,ws,r2的混合积,也就是三个向量组成的六面体的体积,而我们知道矩阵的行列式的值的物理意义就是体积。根据下面的混合积的图,很容易得到矩阵中对应元素的反对称的关系。

下面我们将三个轴的线速度表示为 [ w ] [w] [w]的写法,
R ˙ = [ w s ] R (7) \dot{R}=[w_s]R \tag{7} R˙=[ws]R(7)

[ w s ] = R ˙ R − 1 (8) [w_s]=\dot{R}R^{-1} \tag{8} [ws]=R˙R1(8)
前面我们提到的所有的向量和 R R R都是在fixed frame { S } \{S\} {S}下描述的,下面我们将 w s w_s ws在body frame { b } \{b\} {b}下进行描述,易得,
w s = R s b w b (9) w_s=R_{sb}w_b\tag{9} ws=Rsbwb(9)
则旋转轴在body frame { b } \{b\} {b}下,
w b = R s b − 1 w s = R − 1 w s = R T w s (10) w_b=R_{sb}^{-1}w_s=R^{-1}w_s=R^{T}w_s \tag{10} wb=Rsb1ws=R1ws=RTws(10)
因此可以得到,
[ w b ] = [ R T w s ] = R T [ w s ] R = R T ( R ˙ R T ) R = R T R ˙ = R − 1 R ˙ (11) \begin{aligned} [w_b]&=[R^{T}w_s] \\ &= R^T[w_s]R \\ &= R^T(\dot{R}R^{T})R \\ &=R^T\dot{R} \\ &=R^{-1}\dot{R} \end{aligned}\tag{11} [wb]=[RTws]=RT[ws]R=RT(R˙RT)R=RTR˙=R1R˙(11)

需要注意的是 w b w_b wb是在body frame { b } \{b\} {b}下的描述,所以它描述的角速度不是一个旋转的坐标系的角速度(例如 { b } \{b\} {b}相对于 { S } \{S\} {S}旋转),而是在某一瞬时, w b w_b wb相对于body frame { b } \{b\} {b}的旋转。

2. 微分方程的解

给定下面一个简单的线性微分方程,其中 x ( t ) ∈ R x(t) \in \mathbb{R} x(t)R a ∈ R a \in \mathbb{R} aR,初始状态 x ( t ) = x ( 0 ) x(t) =x(0) x(t)=x(0)
x ˙ ( t ) = a x ( t ) (12) \dot x(t)=ax(t) \tag{12} x˙(t)=ax(t)(12)
易得上述的解为,
x ( t ) = e a t x ( 0 ) (13) x(t)=e^{at}x(0) \tag{13} x(t)=eatx(0)(13)
e a t e^{at} eat 0 0 0附近进行泰勒展开,可得,
e a t = 1 + a t + ( a t ) 2 2 ! + ( a t ) 3 3 ! + ⋯ (14) e^{a t}=1+a t+\frac{(a t)^{2}}{2 !}+\frac{(a t)^{3}}{3 !}+\cdots \tag{14} eat=1+at+2!(at)2+3!(at)3+(14)
同理,当 a a a为矩阵 A A A时, x ( t ) x(t) x(t)为列向量,
x ˙ ( t ) = A x ( t ) (15) \dot x(t)=Ax(t) \tag{15} x˙(t)=Ax(t)(15)
可得解为,
x ( t ) = e A t x ( 0 ) (16) x(t)=e^{At}x(0) \tag{16} x(t)=eAtx(0)(16)
其中,
e A t = 1 + A t + ( A t ) 2 2 ! + ( A t ) 3 3 ! + ⋯ (17) e^{A t}=1+A t+\frac{(A t)^{2}}{2 !}+\frac{(A t)^{3}}{3 !}+\cdots \tag{17} eAt=1+At+2!(At)2+3!(At)3+(17)

3. 指数形式的旋转

任何旋转,都可以用一个旋转轴 ω ^ \hat \omega ω^和一个旋转角 θ \theta θ来描述。其中 ω ^ ∈ R 3 , ∥ ω ^ ∥ = 1 \hat \omega \in \mathbb{R^3},\Vert{\hat \omega}\Vert=1 ω^R3,ω^=1 θ ∈ R 3 \theta \in \mathbb{R^3} θR3
下面我们来分析如何利用一根旋转轴和旋转角来描述旋转,

假设向量 p ( t ) p(t) p(t) p ( 0 ) p(0) p(0)绕着 ω ^ \hat{\omega} ω^以恒定的角速度 1 r a d / s 1rad/s 1rad/s旋转了 θ \theta θ秒,最终到 p ( θ ) p(\theta) p(θ),定义 p ( t ) p(t) p(t)间断的线速度为,
p ˙ = ω ^ × p (18) \dot{p}= \hat{\omega} \times p \tag{18} p˙=ω^×p(18)
由前面的分析,引入 [ ω ^ ] [\hat{\omega}] [ω^],则
p ˙ = [ ω ^ ] p (19) \dot{p}= [\hat{\omega}] p \tag{19} p˙=[ω^]p(19)
该微分方程如前面介绍为,
p ( t ) = e [ ω ^ ] t p ( 0 ) (20) p(t)=e^{[\hat{\omega}] t} p(0) \tag{20} p(t)=e[ω^]tp(0)(20)

则,
p ( θ ) = e [ ω ^ ] θ p ( 0 ) (21) p(\theta)=e^{[\hat{\omega}] \theta} p(0) \tag{21} p(θ)=e[ω^]θp(0)(21)

容易得到 [ ω ^ ] [\hat{\omega}] [ω^]两个计算性质,如下,
[ ω ^ ] [ ω ^ ] = ω ^ ω ^ T − I (22) [\hat{\omega}][\hat{\omega}]=\hat{\omega}\hat{\omega}^{T}-I \tag{22} [ω^][ω^]=ω^ω^TI(22)

[ ω ^ ] [ ω ^ ] [ ω ^ ] = [ ω ^ ] 3 = − [ ω ^ ] (23) [\hat{\omega}][\hat{\omega}][\hat{\omega}]= [\hat{\omega}]^{3}=-[\hat{\omega}] \tag{23} [ω^][ω^][ω^]=[ω^]3=[ω^](23)
所以公式21可以化简为,
e [ ω ^ ] θ = I + [ ω ^ ] θ + [ ω ^ ] 2 θ 2 2 ! + [ ω ^ ] 3 θ 3 3 ! + ⋯ = I + ( θ − θ 3 3 ! + θ 5 5 ! − ⋯   ) [ ω ^ ] + ( θ 2 2 ! − θ 4 4 ! + θ 6 6 ! − ⋯   ) [ ω ^ ] 2 = I + s i n ( θ ) [ ω ^ ] + ( 1 − c o s ( θ ) ) [ ω ^ ] 2 (24) \begin{aligned} e^{[\hat{\omega}] \theta} &=I+[\hat{\omega}] \theta+[\hat{\omega}]^{2} \frac{\theta^{2}}{2 !}+[\hat{\omega}]^{3} \frac{\theta^{3}}{3 !}+\cdots \\ &=I+\left(\theta-\frac{\theta^{3}}{3 !}+\frac{\theta^{5}}{5 !}-\cdots\right)[\hat{\omega}]+\left(\frac{\theta^{2}}{2 !}-\frac{\theta^{4}}{4 !}+\frac{\theta^{6}}{6 !}-\cdots\right)[\hat{\omega}]^{2} \\ &= I+sin(\theta)[\hat{\omega}]+(1-cos(\theta))[\hat{\omega}]^{2} \end{aligned} \tag{24} e[ω^]θ=I+[ω^]θ+[ω^]22!θ2+[ω^]33!θ3+=I+(θ3!θ3+5!θ5)[ω^]+(2!θ24!θ4+6!θ6)[ω^]2=I+sin(θ)[ω^]+(1cos(θ))[ω^]2(24)
上式就是著名的罗德里格斯公式,即指数形式的旋转,
Rot ⁡ ( ω ^ , θ ) = e [ ω ^ ] θ = I + sin ⁡ θ [ ω ^ ] + ( 1 − cos ⁡ θ ) [ ω ^ ] 2 ∈ S O ( 3 ) (25) \operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \tag{25} Rot(ω^,θ)=e[ω^]θ=I+sinθ[ω^]+(1cosθ)[ω^]2SO(3)(25)
经过指数映射,将 s o ( 3 ) s o(3) so(3)和旋转的角度 θ \theta θ通过指数映射为 S O ( 3 ) S O(3) SO(3),即三维的旋转矩阵。

在前面文章中介绍过,旋转矩阵左乘和右乘的区别,这里也是类似的,假设body frame { b } \{b\} {b}在fixed frame { S } \{S\} {S}中的描述为 R s b R_{sb} Rsb,则 Rot ⁡ ( ω ^ , θ ) R s b \operatorname{Rot}(\hat{\omega}, \theta)R_{sb} Rot(ω^,θ)Rsb,左乘,表示将 R s b R_{sb} Rsb顺着 { S } \{S\} {S}中的 ω ^ \hat{\omega} ω^旋转 θ \theta θ。而 R s b Rot ⁡ ( ω ^ , θ ) R_{sb}\operatorname{Rot}(\hat{\omega}, \theta) RsbRot(ω^,θ),右乘,表示将 R s b R_{sb} Rsb顺着 { b } \{b\} {b}中的 ω ^ \hat{\omega} ω^旋转 θ \theta θ

4. 旋转矩阵的对数

上面描述的是从 ω ^ θ \hat{\omega}\theta ω^θ到旋转矩阵 R R R的过程,下面介绍从旋转矩阵 R R R ω ^ θ \hat{\omega}\theta ω^θ的过程,也就是求得旋转向量和具体的旋转角度,求 R R R矩阵的“对数”。可以将两个对应的过程描述成下面的形式,

exp ⁡ : [ ω ^ ] θ ∈ s o ( 3 ) → R ∈ S O ( 3 ) log ⁡ : R ∈ S O ( 3 ) → [ ω ^ ] θ ∈ so ⁡ ( 3 ) \begin{array}{cll} \exp : & [\hat{\omega}] \theta \in s o(3) & \rightarrow & R \in S O(3) \\ \log : & R \in S O(3) & \rightarrow & [\hat{\omega}] \theta \in \operatorname{so}(3) \end{array} exp:log:[ω^]θso(3)RSO(3)RSO(3)[ω^]θso(3)

下面将公式(25)展开,如下,
[ c θ + ω ^ 1 2 ( 1 − c θ ) ω ^ 1 ω ^ 2 ( 1 − c θ ) − ω ^ 3 s θ ω ^ 1 ω ^ 3 ( 1 − c θ ) + ω ^ 2 s θ ω ^ 1 ω ^ 2 ( 1 − c θ ) + ω ^ 3 S θ c θ + ω ^ 2 2 ( 1 − c θ ) ω ^ 2 ω ^ 3 ( 1 − c θ ) − ω ^ 1 s θ ω ^ 1 ω ^ 3 ( 1 − c θ ) − ω ^ 2 S θ ω ^ 2 ω ^ 3 ( 1 − c θ ) + ω ^ 1 s θ c θ + ω ^ 3 2 ( 1 − c θ ) ] (26) \left[\begin{array}{ccc} c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} \mathrm{s}_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} \mathrm{s}_{\theta} \\ \hat{\omega}_{1} \hat{\omega}_{2}\left(1-\mathrm{c}_{\theta}\right)+\hat{\omega}_{3} \mathrm{S}_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-\mathrm{c}_{\theta}\right)-\hat{\omega}_{1} \mathrm{s}_{\theta} \\ \hat{\omega}_{1} \hat{\omega}_{3}\left(1-\mathrm{c}_{\theta}\right)-\hat{\omega}_{2} \mathrm{S}_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-\mathrm{c}_{\theta}\right)+\hat{\omega}_{1} \mathrm{s}_{\theta} & \mathrm{c}_{\theta}+\hat{\omega}_{3}^{2}\left(1-\mathrm{c}_{\theta}\right) \end{array}\right] \tag{26} cθ+ω^12(1cθ)ω^1ω^2(1cθ)+ω^3Sθω^1ω^3(1cθ)ω^2Sθω^1ω^2(1cθ)ω^3sθcθ+ω^22(1cθ)ω^2ω^3(1cθ)+ω^1sθω^1ω^3(1cθ)+ω^2sθω^2ω^3(1cθ)ω^1sθcθ+ω^32(1cθ)(26)
其中, ω ^ = [ w 1 ^ w 2 ^ w 3 ^ ] \hat{\omega} = \begin{bmatrix} \hat{w_1} \\ \hat{w_2} \\ \hat{w_3} \end{bmatrix} ω^=w1^w2^w3^ c θ = c o s ( θ ) \mathrm{c}_{\theta}=cos(\theta) cθ=cos(θ) s θ = s i n ( θ ) \mathrm{s}_{\theta}=sin(\theta) sθ=sin(θ)
记旋转矩阵 R R R r i j r_{ij} rij,则可以得到,
r 32 − r 23 = 2 ω ^ 1 s i n ( θ ) r 13 − r 31 = 2 ω ^ 2 s i n ( θ ) r 21 − r 12 = 2 ω ^ 3 s i n ( θ ) (27) \begin{aligned} r_{32}-r_{23}&=2 \hat{\omega}_{1}sin(\theta) \\ r_{13}-r_{31}&=2 \hat{\omega}_{2}sin(\theta) \\ r_{21}-r_{12}&=2 \hat{\omega}_{3}sin(\theta) \end{aligned} \tag{27} r32r23r13r31r21r12=2ω^1sin(θ)=2ω^2sin(θ)=2ω^3sin(θ)(27)
上式在 s i n ( θ ) ≠ 0 sin(\theta)\ne 0 sin(θ)=0的情况下,可以得到,
ω ^ 1 = 1 2 s i n ( θ ) ( r 32 − r 23 ) ω ^ 2 = 1 2 s i n ( θ ) ( r 13 − r 31 ) ω ^ 3 = 1 2 s i n ( θ ) ( r 21 − r 12 ) (28) \begin{aligned} \hat{\omega}_{1}=\frac{1}{2sin(\theta)}(r_{32}-r_{23}) \\ \hat{\omega}_{2}=\frac{1}{2sin(\theta)}(r_{13}-r_{31}) \\ \hat{\omega}_{3}=\frac{1}{2sin(\theta)}(r_{21}-r_{12}) \end{aligned} \tag{28} ω^1=2sin(θ)1(r32r23)ω^2=2sin(θ)1(r13r31)ω^3=2sin(θ)1(r21r12)(28)
上式也可以写成,
[ ω ^ ] = [ 0 − ω ^ 3 ω ^ 2 ω ^ 3 0 − ω ^ 1 − ω ^ 2 ω ^ 1 0 ] = 1 2 sin ⁡ θ ( R − R T ) (29) [\hat{\omega}]=\left[\begin{array}{ccc} 0 & -\hat{\omega}_{3} & \hat{\omega}_{2} \\ \hat{\omega}_{3} & 0 & -\hat{\omega}_{1} \\ -\hat{\omega}_{2} & \hat{\omega}_{1} & 0 \end{array}\right]=\frac{1}{2 \sin \theta}\left(R-R^{\mathrm{T}}\right) \tag{29} [ω^]=0ω^3ω^2ω^30ω^1ω^2ω^10=2sinθ1(RRT)(29)

此外,由式(26)可以得到另外一个计算 θ \theta θ的公式,
tr ⁡ R = r 11 + r 22 + r 33 = 1 + 2 cos ⁡ θ (30) \operatorname{tr} R=r_{11}+r_{22}+r_{33}=1+2 \cos \theta \tag{30} trR=r11+r22+r33=1+2cosθ(30)
至此, s i n ( θ ) ≠ 0 sin(\theta)\ne 0 sin(θ)=0的情况下,利用旋转矩阵 R R R,我们计算出了 ω ^ \hat{\omega} ω^ θ \theta θ。接下来讨论 s i n ( θ ) = 0 sin(\theta) = 0 sin(θ)=0的情况:

  1. θ = k π \theta=k\pi θ=kπ,且 k k k是偶数的情况下,此时相当于没有旋转,回到了原位置, R = I R=I R=I
  2. θ = k π \theta=k\pi θ=kπ,且 k k k是奇数的情况下,此时有,
    R = e [ ω ^ ] π = I + 2 [ ω ^ ] 2 (31) R=e^{[\hat{\omega}] \pi}=I+2[\hat{\omega}]^{2} \tag{31} R=e[ω^]π=I+2[ω^]2(31)
    因为式(31)三个矩阵都是对角矩阵,所以可以得到下面的结果(利用 R R R对角元素)
    ω ^ i = ± r i i + 1 2 , i = 1 , 2 , 3 (32) \hat{\omega}_{i}=\pm \sqrt{\frac{r_{i i}+1}{2}}, \quad i=1,2,3 \tag{32} ω^i=±2rii+1 ,i=1,2,3(32)
    利用 R R R非对角元素,可得,
    2 ω ^ 1 ω ^ 2 = r 12 2 ω ^ 2 ω ^ 3 = r 23 2 ω ^ 1 ω ^ 3 = r 13 (33) \begin{aligned} 2 \hat{\omega}_{1} \hat{\omega}_{2} &=r_{12} \\ 2 \hat{\omega}_{2} \hat{\omega}_{3} &=r_{23} \\ 2 \hat{\omega}_{1} \hat{\omega}_{3} &=r_{13} \end{aligned} \tag{33} 2ω^1ω^22ω^2ω^32ω^1ω^3=r12=r23=r13(33)
    利用式(32)和式(33)我们就能计算出 ω ^ \hat{\omega} ω^,同时此时旋转的角为 θ = ± π , ± 3 π , … \theta=\pm \pi, \pm 3 \pi, \ldots θ=±π,±3π,
    从上面的计算过程很容易看出来,旋转角度是以 2 π 2\pi 2π为周期,其实也是符合物理意义的,旋转 π \pi π和旋转 3 π 3\pi 3π的效果是一样的,因此我们可以将旋转的角度限定在 [ − π , π ] [-\pi,\pi] [π,π]。此时计算的 ω ^ θ \hat{\omega}\theta ω^θ的长度是 ≤ π \le\pi π的。因此我们可以把 S O ( 3 ) S O (3) SO(3)想象为一个半径为 π \pi π实心球,如下图所示,


当给定球中的一点 r ∈ R 3 r\in\mathbb{R}^3 rR3,我们可以将 ω ^ = r ∥ r ∥ \hat{\omega}=\frac{r}{\Vert r\Vert} ω^=rr作为单位长度的旋转轴, ∥ r ∥ \Vert r\Vert r作为 θ \theta θ。和 r r r相对应的旋转矩阵 R R R可以被看作是绕着 ω ^ \hat{\omega} ω^旋转了 θ \theta θ角。对于 R ∈ S O ( 3 ) R\in SO(3) RSO(3),同时 t r R ≠ − 1 trR \ne -1 trR=1,此时在实心球中总能找到一个唯一的 r r r,使得 e [ r ] = R e^{[r]}=R e[r]=R。当 t r R = − 1 trR = -1 trR=1时,此时 ∥ r ∥ = π \Vert r\Vert=\pi r=π,在实心球的表面有一对正好相反的一对点,两者的效果是一样的, r r r − r -r r都对应了同一个 R R R

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值