UTF8gbsn
-
矩阵的初等行变换
-
把一行的倍数加到另叫行上
-
互换两行的位置
-
用一个非零数乘某一行
-
-
定义:常数项全为 0 的线性方程组称为齐次线性方程组
-
定义:复数集的一个子集 K 如果满足:
-
0 , 1 ∈ K 0,1\in K 0,1∈K
-
a , b ∈ K ⇔ a ± b , a b ∈ K a,b\in K \Leftrightarrow a\pm b, ab\in K a,b∈K⇔a±b,ab∈K
-
a , b ∈ K , b ≠ 0 , ⇒ a b ∈ K a,b\in K, b\neq 0, \Rightarrow \frac{a}{b}\in K a,b∈K,b=0,⇒ba∈K
那么,称K是一个数域.(PS:有理数集Q,实数集R,复数集 C都是数域;
但是整数集Z不是数域, 因为Z对子除法不封闭.) -
-
定理:任一数域都包含有理数域
-
1 ∈ K ⇒ ± 1 , ± 2 , ± 3 , ± 4 , . . . , ± n , . . . ∈ K 1\in K \Rightarrow \pm 1,\pm 2,\pm 3,\pm 4,...,\pm n,...\in K 1∈K⇒±1,±2,±3,±4,...,±n,...∈K
-
a b ∈ K \frac{a}{b}\in K ba∈K
最终可得 Q ⊆ K Q\subseteq K Q⊆K
-
-
复数域是最大的数域
-
定义: 逆序
-
12345是一个顺序的.
-
21345中含有则不是顺序的,2位于1的前面.这就是逆序的.
-
-
定义: 逆序对
-
21345,其中21构成一个逆序对
-
32145,那么这里面(2,1),(3,1),(3,2)各构成一个逆序对.
-
-
定义: 逆序数(逆序对的个数)
-
定义: 奇排列(逆序数为奇数的数列)
-
定义: 偶排列(逆序数为偶数的数列)
-
定义: 对换(交换排列中的两个元素的位置)
-
定理: 对换 i , j i,j i,j改变n元排列的奇偶性.
-
如果 i , j i,j i,j相邻.则对换他们两个正好改变一个逆序.
-
如果 i , j i,j i,j之间相隔k个元素.那么 i i i与 i + 1 , i + 2 , ⋯ , j i+1,i+2,\cdots, j i+1,i+2,⋯,j共进行了 k + 1 k+1 k+1次邻接元素之间的对换.反方向来 j j j继续往前对换共进行 k k k次对换到达 i i i原先的位置.总共进行 2 k + 1 2k+1 2k+1次对换.
最终原命题得证.
-
-
定理: 任一 n 元排列与排列 123 ⋯ n 123\cdots n 123⋯n
可以经过一系列对换互变,并且所作对换的次数与这个n元排列有相同的奇偶性.-
123…n很明显是一个偶排序.(根据定义10)
-
根据定理12我们可以得知如果一个奇排序想要变成一个欧排序那么肯定要进行奇数次变换.偶数的话就只需要偶数次就可以了.
-
-
行列式定义
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{nj_n} ∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣=j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1a2j2⋯anjn
其中 τ \tau τ是逆序数,参见定义8 -
n阶上三角形行列式的值等于它的主对角线上n个元素的乘积
-
根据定义14我们可得
∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{nj_{n}} j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1a2j2⋯anjn -
其中 a n j n a_{nj_n} anjn不等于0,除非 j n = n j_n=n jn=n,以此类推克制 j 1 = 1 , j 2 = 2 , ⋯ , j n = n j_1=1,j_2=2,\cdots, j_n=n j1=1,j2=2,⋯,jn=n
-
-
如果 ( − 1 ) τ ( j 1 j 2 ⋯ i n ) a 1 j 1 a 2 j 2 ⋯ a n j n (-1)^{\tau\left(j_{1} j_{2} \cdots i_{n}\right)} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} (−1)τ(j1j2⋯in)a1j1a2j2⋯anjn,经过一定步骤变换为 ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + r ( k 1 k 2 ⋯ k n ) a i 1 k 1 a i 2 k 2 ⋯ a i n k n (-1)^{\tau\left(i_{1} i_{2} \cdots i_{n}\right)+r\left(k_{1} k_{2} \cdots k_{n}\right)} a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} (−1)τ(i1i2⋯in)+r(k1k2⋯kn)ai1k1ai2k2⋯ainkn.那么我们可得
( − 1 ) τ ( i 1 i 2 ⋯ i n ) + r ( k 1 k 2 ⋯ k n ) = ( − 1 ) τ ( j 1 j 2 ⋯ j n ) (-1)^{\tau\left(i_{1} i_{2} \cdots i_{n}\right)+r\left(k_{1} k_{2} \cdots k_{n}\right)}=(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} (−1)τ(i1i2⋯in)+r(k1k2⋯kn)=(−1)τ(j1j2⋯jn)-
从 12 ⋯ n ↦ i 1 i 2 ⋯ i n 12\cdots n \mapsto i_1i_2\cdots i_n 12⋯n↦i1i2⋯in经过了s次对换.
-
同理 j 1 j 2 ⋯ j n ↦ k 1 k 2 ⋯ k n j_1j_2\cdots j_n\mapsto k_1k_2\cdots k_n j1j2⋯jn↦k1k2⋯kn也经过了s次对换.
-
经过 2 s 2s 2s次对换,奇偶性不变
-
-
行列式性质1:行列互换,行列式的值不变. ∣ A ∣ = ∣ A T ∣ |A|=|A^T| ∣A∣=∣AT∣
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ∣ \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\left|\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{n 1} \\ a_{12} & a_{22} & \cdots & a_{n 2} \\ \vdots & \vdots & & \vdots \\ a_{1 n} & a_{2 n} & \cdots & a_{n n}\end{array}\right| ∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣a11a12⋮a1na21a22⋮a2n⋯⋯⋯an1an2⋮ann∣∣∣∣∣∣∣∣∣
根据行列式的定义14左边和右边的展开式形式一样. -
行列式性质2:行列式一行的公因子可以提出去.
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = k ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=k\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| ∣∣∣∣∣∣∣∣∣∣∣∣a11⋮kai1⋮an1a12⋮kai2⋮an2⋯⋯⋯a1n⋮kain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=k∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮an1a12⋮ai2⋮an2⋯⋯⋯a1n⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣-
根据行列式定义14,可得左边 = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 ⋯ ( k a i j i ) ⋯ a n j n = k ∑ j 1 j 2 ⋯ j k ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 ⋯ a i j i ⋯ a n j n \left. \begin{aligned} &=\sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} \cdots\left(k a_{i j_{i}}\right) \cdots a_{nj_{n}}\\ &=k \sum_{j_{1} j_{2} \cdots j_{k}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} \cdots a_{i j_{i}} \cdots a_{n j_{n}} \end{aligned} \right. =j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1⋯(kaiji)⋯anjn=kj1j2⋯jk∑(−1)τ(j1j2⋯jn)a1j1⋯aiji⋯anjn
-
左边等于右边,于是原式得证.
-
-
行列式性质3:行列式中若有某一行是两组数的和,则此行列式等于两个行列式的和.这两个行列式的这一行分别是第一组数和第二组数而其余各行与原来行列式的相应各行相同.
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ b 1 + c 1 b 2 + c 2 ⋯ b n + c n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{1}+c_{1} & b_{2}+c_{2} & \cdots & b_{n}+c_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| ∣∣∣∣∣∣∣∣∣∣∣∣a11⋮b1+c1⋮an1a12⋮b2+c2⋮an2⋯⋯⋯a1n⋮bn+cn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
= ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ b 1 b 2 ⋯ b n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a m ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ c 1 c 2 ⋯ c n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ =\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{1} & b_{2} & \cdots & b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{m}\end{array}\right|+\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ c_{1} & c_{2} & \cdots & c_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| =∣∣∣∣∣∣∣∣∣∣∣∣a11⋮b1⋮an1a12⋮b2⋮an2⋯⋯⋯a1n⋮bn⋮am∣∣∣∣∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣∣∣∣∣a11⋮c1⋮an1a12⋮c2⋮an2⋯⋯⋯a1n⋮cn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣-
左边,按照行列式定义14可得.
∑ i 1 ′ 2 ⋯ : i n ( − 1 ) τ ( j 1 , j 2 ⋯ i n ) a 1 j 1 ⋯ ( b j i + c j i ) ⋯ a n j n \sum_{i_{1}^{\prime} 2^{\cdots}: i_{n}}(-1)^{\tau\left(j_{1}, j_{2} \cdots i_{n}\right)} a_{1 j_{1}} \cdots\left(b_{j_{i}}+c_{j_{i}}\right) \cdots a_{n j_{n}} i1′2⋯:in∑(−1)τ(j1,j2⋯in)a1j1⋯(bji+cji)⋯anjn -
很容易看出等于右边
∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 ⋯ b j i ⋯ a n j n + ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 ⋯ c j i ⋯ a n j n \sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} \cdots b_{j_{i}} \cdots a_{n j_{n}}+\sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} \cdots c_{j_{i}} \cdots a_{n j_{n}} j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1⋯bji⋯anjn+j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1⋯cji⋯anjn
于是原式得证.
-
-
行列式性质4:两行互换 , 行列式反号
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a k 1 a k 2 ⋯ a k n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = − ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a k 1 a k 2 ⋯ a k n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=-\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{nn}\end{array}\right| ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮ak1⋮an1a12⋮ai2⋮ak2⋮an2⋯⋯⋯⋯a1n⋮ain⋮akn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣=−∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ak1⋮ai1⋮an1a12⋮ak2⋮ai2⋮an2⋯⋯⋯⋯a1n⋮akn⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣-
首先右边边按照行列式定义14可得
∑ j 1 ⋯ j i ⋯ j k ⋯ j n ( − 1 ) τ ( j 1 ⋯ j i ⋯ j k ⋯ j n ) a 1 j 1 ⋯ a k j i ⋯ a i j k ⋯ a n j n \sum_{j_{1} \cdots j_{i} \cdots j_{k} \cdots j_{n}}(-1)^{\tau\left(j_{1} \cdots j_{i} \cdots j_{k} \cdots j_{n}\right)} a_{1 j_{1}} \cdots a_{k j_{i}} \cdots a_{i j_{k}} \cdots a_{n j_{n}} j1⋯ji⋯jk⋯jn∑(−1)τ(j1⋯ji⋯jk⋯jn)a1j1⋯akji⋯aijk⋯anjn -
左边
∑ j 1 ⋯ j k ⋯ j i ⋯ j n ( − 1 ) τ ( j 1 ⋯ j k ⋯ j i ⋯ j n ) a 1 j 1 ⋯ a i j k ⋯ a k j i ⋯ a n j n \sum_{j_{1} \cdots j_{k} \cdots j_{i} \cdots j_{n}}(-1)^{\tau\left(j_{1} \cdots j_{k} \cdots j_{i} \cdots j_{n}\right)} a_{1 j_{1}} \cdots a_{i j_{k}} \cdots a_{k j_{i}} \cdots a_{n j_{n}} j1⋯jk⋯ji⋯jn∑(−1)τ(j1⋯jk⋯ji⋯jn)a1j1⋯aijk⋯akji⋯anjn -
根据定理12我们可得
( − 1 ) τ ( j 1 ⋯ j i ⋯ j k ⋯ j n ) = ( − 1 ) ( − 1 ) τ ( j 1 ⋯ j k ⋯ j i ⋯ j n ) (-1)^{\tau(j_1\cdots j_i\cdots j_k\cdots j_n)}=(-1)(-1)^{\tau(j_1\cdots j_k\cdots j_i\cdots j_n)} (−1)τ(j1⋯ji⋯jk⋯jn)=(−1)(−1)τ(j1⋯jk⋯ji⋯jn)
于是原式得证.
-
-
行列式性质5:两行相同 ,行列式的值为 0
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = 0 \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=0 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮ai1⋮an1a12⋮ai2⋮ai2⋮an2⋯⋯⋯⋯a1n⋮ain⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣=0-
根据性质20可得
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a n n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a n n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = − ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{nn} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{nn} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=-\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮ai1⋮an1a12⋮ai2⋮ai2⋮an2⋯⋯⋯⋯a1n⋮ann⋮ann⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣=−∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮ai1⋮an1a12⋮ai2⋮ai2⋮an2⋯⋯⋯⋯a1n⋮ain⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ -
由此可见原式得证.
-
-
行列式性质6:两行成比例行列式的值为 0
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ l a i 1 l a i 2 ⋯ l a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n a ∣ = 0 \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ l a_{i 1} & l a_{i 2} & \cdots & l a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n a}\end{array}\right|=0 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮lai1⋮an1a12⋮ai2⋮lai2⋮an2⋯⋯⋯⋯a1n⋮ain⋮lain⋮ana∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣=0-
根据性质18,可以变成性质21的矩阵(有相同的行)
-
由此可见.原式得证.
-
-
行列式性质7:把一行的倍数加到另一行上 ,行列式的值不变
-
根据性质19,可拆解为两了矩阵,其中一个矩阵是原矩阵.另一个矩阵是性质22的矩阵(行列式为0).
-
最终课件原式得证.
-
-
定义: n n n阶行列式 ∣ A ∣ |A| ∣A∣中,划去 i i i行 j j j列.剩下的元素按原来的 n − 1 n-1 n−1阶行列式成为矩阵 A A A的 ( i , j ) (i,j) (i,j)元的余子式.记做 M i j M_{ij} Mij
-
定义: A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij称为代数余子式.
-
定理:
∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∑ j = 1 n a i j A i j \begin{aligned}|A| &=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n} \\ &=\sum_{j=1}^{n} a_{i j} A_{i j} \end{aligned} ∣A∣=ai1Ai1+ai2Ai2+⋯+ainAin=j=1∑naijAij-
根据定义14可得
∣ A ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n |A|=\sum_{j_1j_2\cdots j_n}(-1)^{\tau(j_1j_2\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n} ∣A∣=j1j2⋯jn∑(−1)τ(j1j2⋯jn)a1j1a2j2⋯anjn -
我们根据 i i i行展开
∑ k 1 ⋯ k i − 1 j k i + 1 ⋯ k n ( − 1 ) τ ( k 1 ⋯ k i − 1 j k i + 1 ⋯ k n ) a 1 k 1 ⋯ a i − 1 , k i − 1 a i j a i + 1 , k i + 1 ⋯ a n k n \sum_{k_{1} \cdots k_{i-1} j k_{i+1} \cdots k_{n}}(-1)^{\tau\left(k_{1} \cdots k_{i-1} j k_{i+1} \cdots k_{n}\right)} a_{1 k_{1}} \cdots a_{i-1, k_{i-1}} a_{i j} a_{i+1, k_{i+1}} \cdots a_{n k_{n}} k1⋯ki−1jki+1⋯kn∑(−1)τ(k1⋯ki−1jki+1⋯kn)a1k1⋯ai−1,ki−1aijai+1,ki+1⋯ankn -
然后,我们可以把 a i j a_{ij} aij提出来.
∑ j = 1 n a i j ( − 1 ) i − 1 ( − 1 ) j − 1 ∑ k 1 ⋯ k i − 1 k i + 1 ⋯ k n ( − 1 ) τ ( k 1 ⋯ k i − 1 k i + 1 ⋯ k n ) a 1 k 1 ⋯ a i − 1 , k k − 1 a i + 1 , k 1 + 1 ⋯ a n k n \sum_{j=1}^{n} a_{i j}(-1)^{i-1}(-1)^{j-1} \sum_{k_{1} \cdots k_{i-1} k_{i+1} \cdots k_{n}}(-1)^{\tau\left(k_{1} \cdots k_{i-1} k_{i+1} \cdots k_{n}\right)} a_{1 k_{1}} \cdots a_{i-1, k_{k-1}} a_{i+1, k_{1+1}} \cdots a_{n k_{n}} j=1∑naij(−1)i−1(−1)j−1k1⋯ki−1ki+1⋯kn∑(−1)τ(k1⋯ki−1ki+1⋯kn)a1k1⋯ai−1,kk−1ai+1,k1+1⋯ankn -
也就是说
∑ j = 1 n ( − 1 ) i + j a i j ∣ a 11 ⋯ a 1 , j − 1 a 1 , j + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 ⋯ a i − 1 , j − 1 a i − 1 , j + 1 ⋯ a i − 1 , n a i + 1 , 1 ⋯ a i + 1 , j − 1 a i + 1 , j + 1 ⋯ a i + 1 , n ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n n ∣ \sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|\begin{array}{cccccc}a_{11} & \cdots & a_{1, j-1} & a_{1, j+1} & \cdots & a_{1 n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1, j-1} & a_{i-1, j+1} & \cdots & a_{i-1, n} \\ a_{i+1,1} & \cdots & a_{i+1, j-1} & a_{i+1, j+1} & \cdots & a_{i+1, n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n, j-1} & a_{n, j+1} & \cdots & a_{n n}\end{array}\right| j=1∑n(−1)i+jaij∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai−1,1ai+1,1⋮an1⋯⋯⋯⋯a1,j−1⋮ai−1,j−1ai+1,j−1⋮an,j−1a1,j+1⋮ai−1,j+1ai+1,j+1⋮an,j+1⋯⋯⋯⋯a1n⋮ai−1,nai+1,n⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣
上式子即
= ∑ i = 1 n ( − 1 ) i + j a i j M i j = ∑ j = 1 n a i j A i j =\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}=\sum_{j=1}^{n} a_{i j} A_{i j} =i=1∑n(−1)i+jaijMij=j=1∑naijAij
-
-
定理:
∣ A ∣ = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j = ∑ l = 1 n a l j A l j \begin{aligned}|A| &=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j} \\ &=\sum_{l=1}^{n} a_{l j} A_{l j} \end{aligned} ∣A∣=a1jA1j+a2jA2j+⋯+anjAnj=l=1∑naljAlj
可由转置行列式得 -
定理
n n n阶行列式的第 i i i行元素与第 k k k行相应元素的代数余子式的乘积之和等于0.
∣ B ∣ = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a 11 a i 2 … a i n ⋮ ⋮ ⋮ a i 1 a i 2 … a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ |B|=\left|\begin{array}{cccc}a_{11} & a_{12} & \dots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{11} & a_{i 2} & \dots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \dots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \dots & a_{nn}\end{array}\right| ∣B∣=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮a11⋮ai1⋮an1a12⋮ai2⋮ai2⋮an2…………a1n⋮ain⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ -
定义:范德蒙行列式
∣ 1 1 1 ⋯ 1 a 1 a 2 a 3 ⋯ a n a 1 2 a 2 2 a 3 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋮ a 1 n − 2 a 2 n − 2 a 3 n − 2 ⋯ a n n − 2 a 1 n − 1 a 2 n − 1 a 3 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ j < i ⩽ n ( a i − a j ) \left|\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\ a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & \cdots & a_{n}^{2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1}^{n-2} & a_{2}^{n-2} & a_{3}^{n-2} & \cdots & a_{n}^{n-2} \\ a_{1}^{n-1} & a_{2}^{n-1} & a_{3}^{n-1} & \cdots & a_{n}^{n-1}\end{array}\right|=\prod_{1 \leqslant j<i \leqslant n}\left(a_{i}-a_{j}\right) ∣∣∣∣∣∣∣∣∣∣∣∣∣1a1a12⋮a1n−2a1n−11a2a22⋮a2n−2a2n−11a3a32⋮a3n−2a3n−1⋯⋯⋯⋯⋯1anan2⋮ann−2ann−1∣∣∣∣∣∣∣∣∣∣∣∣∣=1⩽j<i⩽n∏(ai−aj)
归纳法证明 -
n个方程的n元线性方程组的系数行列式 ∣ A ∣ ≠ 0 |A|\neq 0 ∣A∣=0 时,它的唯一解是
( B 1 ∣ ∣ A ∣ , ∣ B 2 ∣ ∣ A ∣ , ⋯ , ∣ B n ∣ ∣ A ∣ ) \left(\frac{B_{1} |}{|A|}, \frac{\left|B_{2}\right|}{|A|}, \cdots, \frac{\left|B_{n}\right|}{|A|}\right) (∣A∣B1∣,∣A∣∣B2∣,⋯,∣A∣∣Bn∣)
带入第一个方程 = a i 1 ∣ B 1 ∣ ∣ A ∣ + a i 2 ∣ B 2 ∣ ∣ A ∣ + ⋯ + a i n ∣ B n ∣ ∣ A ∣ = 1 ∣ A ∣ ∑ i = 1 n a i j ( ∑ k = 1 n b k A k j ) = 1 ∣ A ∣ ∑ j = 1 n ∑ k = 1 n a i j b k A k j = 1 ∣ A ∣ ∑ k = 1 n b k ( ∑ j = 1 n a i j A k j ) = 1 ∣ A ∣ b i ∣ A ∣ = b i \left. \begin{aligned} &=a_{i 1} \frac{\left|B_{1}\right|}{|A|}+a_{i 2} \frac{\left|B_{2}\right|}{|A|}+\cdots+a_{i n} \frac{\left|B_{n}\right|}{|A|}\\ &=\frac{1}{|A|} \sum_{i=1}^{n} a_{i j}\left(\sum_{k=1}^{n} b_{k} A_{k j}\right)\\ &=\frac{1}{|A|} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{i j} b_{k} A_{k j}\\ &=\frac{1}{|A|} \sum_{k=1}^{n} b_{k}\left(\sum_{j=1}^{n} a_{i j} A_{k j}\right)\\ &=\frac{1}{|A|} b_{i}|A|=b_{i} \end{aligned} \right. =ai1∣A∣∣B1∣+ai2∣A∣∣B2∣+⋯+ain∣A∣∣Bn∣=∣A∣1i=1∑naij(k=1∑nbkAkj)=∣A∣1j=1∑nk=1∑naijbkAkj=∣A∣1k=1∑nbk(j=1∑naijAkj)=∣A∣1bi∣A∣=bi -
定义:n阶行列式任意取k行k列,把交叉点的元素按照原来的顺序排列得k阶子式.剩下的 n − k n-k n−k阶叫做余子式.而在前面加上
( − 1 ) ( i 1 + i 2 + ⋯ + i k ) + ( j 1 + j 2 + ⋯ + j k ) (-1)^{\left(i_{1}+i_{2}+\cdots+i_{k}\right)+\left(j_{1}+j_{2}+\cdots+j_{k}\right)} (−1)(i1+i2+⋯+ik)+(j1+j2+⋯+jk)
可得代数余子式. -
拉普拉斯定理:
∣ A ∣ = ∑ 1 ⩽ j 1 < j 2 < ⋯ < j k ⩽ n A ( i 1 , i 2 , ⋯ , i k j 1 , j 2 , ⋯ , j k ) ( − 1 ) ( i 1 + ⋯ + i k ) + ( j 1 + ⋯ + j k ) A ( i 1 ′ , i 2 ′ , ⋯ , i n − k ′ j 1 ′ , j 2 ′ , ⋯ , j n − k ′ ) |A|=\sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{k} \leqslant n} A\left(\begin{array}{l}i_{1}, i_{2}, \cdots, i_{k} \\ j_{1}, j_{2}, \cdots, j_{k}\end{array}\right)(-1)^{\left(i_{1}+\cdots+i_{k}\right)+\left(j_{1}+\cdots+j_{k}\right)} A\left(\begin{array}{l}i_{1}^{\prime}, i_{2}^{\prime}, \cdots, i_{n-k}^{\prime} \\ j_{1}^{\prime}, j_{2}^{\prime}, \cdots, j_{n-k}^{\prime}\end{array}\right) ∣A∣=1⩽j1<j2<⋯<jk⩽n∑A(i1,i2,⋯,ikj1,j2,⋯,jk)(−1)(i1+⋯+ik)+(j1+⋯+jk)A(i1′,i2′,⋯,in−k′j1′,j2′,⋯,jn−k′)
按照定义展开,右边每一项对应左边每一项.仅此而已.