1.3 Introductory MPC Regulator
1.3.1 Linear Quadratic Problem
系统模型
Using the model we can predict how the state evolves given any set of inputs we are considering.
约束是把MPC和标准Lineat Quadratic(LQ)问题区分开的关键。
目标函数
So we show the objective function's explicit dependence on the input sequence and initial state.
Tuning parameter matrix:状态矩阵的系数矩阵Q大表示设计者希望以较大的控制量更快地驱动状态到达原点,控制量的系数矩阵R大是希望减小控制动作以放缓状态量到达原点的速率。
假设Q、R和Pf都是实数的、对称的;Q和Pf是半正定的,R是正定的。这些假设保证了最优控制问题的解的存在性和唯一性。
1.3.5 Controllability
能控的和能镇定的不是一个性质,controllable是所有状态都可控,stabilizable是不可控的状态都在系统的左半平面。
1.3.6 Convergence of the Linear Quadratic Regulator
无穷时域的目标函数
这个无穷时域线性二次规划问题是稳定的(linear quadratic regulator (LQR) is stabilizing)。
收敛性引理:
Proof. 因为(A,B)可控,所以无穷时域代价函数的取值对于任意x(0)都是有界的,可控性表明对任意x(0)都存在控制序列(u(0),u(1),u(2),...,u(n-1))可使得x(n)=0。k=n以后的控制序列(u(n+1),u(n+2),...)全取0可使k=n以后的V的所有项都等于0。因此在这个无穷时域控制序列下的目标函数的取值是有限值。因为R>0,所以V对于所有u是凸的,所以这个优化问题的解是唯一的。
进一步考虑沿着闭环轨迹运行的cost序列
Vk是k时刻对于状态x(k)的cost,u(k)是k时刻求出来的最优控制量。因此闭环轨迹上的代价是不递增的,且有下界,Vk收敛而且
又因为Q、R>0,所以
建立了闭环收敛性。
对于线性系统,渐近收敛等价于渐近稳定。
1.4 Introductory MPC Regulator
1.4.3 Least Squares Estimation
(确定性)最小二乘优化问题产生的结果与卡尔曼滤波器的条件密度函数最大化结果相同。