Slingshot:单细胞数据的轨迹推断

这里不介绍安装,直接介绍seurat如何结合Slingshot进行分析,想要看从头的,可以查看R包官网说明

Slingshot: Trajectory Inference for Single-Cell Data

做轨迹分析前已经有一个经过质控、降维、聚类并且完成注释的 seurat 对象

1、slingshot 接收的是 sce 对象,因此我们首先要构建一个

library(SingleCellExperiment)
library(slingshot)

#-----------------------------------step1 构建SingleCellExperiment对象
#导入seurat对象
load('seurat.Rdata')

#提取标化完后的数据以及细胞名称(一般是2000HVG)
scale.data <- scobj@assays$RNA@scale.data
scale.gene <- rownames(scale.data)

#提取原始count值(2000HVG)
counts <- scobj@assays$RNA@counts
counts <- counts[scale.gene,]

# 将表达矩阵转换为SingleCellExperiment对象
sim <- SingleCellExperiment(assays = List(counts = counts
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值