YoloV8改进策略:改进Neck|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

本文介绍了针对YOLOV8的两项改进,通过融合空间和频域注意力,超越了GAM、BAM、CBAM等传统注意力机制。改进包括在Neck的上采样区域及Neck与Head间加入自研的SPFFT_Attention,并提供了详细代码实现和测试结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文尝试改进了新的注意力,使用空间注意力和多轴频域注意力融合改进。改进后的注意力超越了GAM、BAM和CBAM等常用的注意力。

GAM

# 导入PyTorch的神经网络模块  
import torch.nn as nn  
# 导入PyTorch库  
import torch  
  
# 定义一个名为GAM_Attention的类,继承自nn.Module  
class GAM_Attention(nn.Module)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值