通信入门系列——概率、联合概率、条件概率

本文介绍了微信公众号上关于FPGA项目的资源,重点讲解了事件与概率、联合事件、条件概率在通信中的应用,特别是如何利用概率论处理信道噪声和随机信号,以及联合概率和条件概率的概念及其在通信中的实际意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等
在这里插入图片描述
本节目录

一、事件与概率
二、联合事件和联合概率
三、条件概率

本节内容
一、事件与概率
在通信中,调制解调方法,离不开概率论的相关知识。因为信道、噪声和干扰都是随机信号,需要用到概率论的知识。
什么是事件?
以6个面的色子为例,随机投掷一次色子,在概率论中称为一次试验。每次试验都会获得一个结构,所有可能的试验结果的集合称为样本空间。那么,在这个样本空间中,所出现的一个或者多个特定的试验结果,称为一个事件。其实事件是样本空间的子集。
什么是概率?
概率,其实描述的某个事件发生的可能性。在20世纪出其的勒贝格测度与积分理论,以及随后发展的抽象测度和积分理论,都为概率功率体系的建立奠定了基础,真正给出概率的测度论定义和公立的体系,是在《概率论基础》一书中。
书中描述,若E是随机试验,S是对应的样本空间。对于E的每一个事件A赋予一个实数,记为P(A),称为事件A的概率。P(·)表示一个集合函数,必须满足下述条件:
①非负性:对于每一个事件A,有P(A)≥0;
②规范性:对于必然事件S,有P(S)=1;
③可列可加性:设A1,A2……是两两互补相容的事件。即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……。其中,φ为空集。
概率的表示如下,其中N为试验次数,N(A)是事件A发生的次数。
在这里插入图片描述

二、联合事件和联合概率
若SA是随机试验EA的样本空间,A是SA的一个子事件,SB是随机试验EB的样本空间,B是SB的一个子事件。A和B是两个事件,是任意的,可以是同一试验的两个事件,也可以是具有相同样本空间的两次试验,也可以是不同样本空间的两次试验,通常,将(A,B)称为一个联合事件。
把样本空间SA划分为互斥的m个事件Ai(i=1,2,……,m),把样本空间SB划分为互斥的n个事件Bj(j=1,2,……,n),并且满足:
在这里插入图片描述

那么(Ai,Bj)是一个联合事件,其对应的一个概率P(Ai,Bj)称为联合概率。
在这里插入图片描述

三、条件概率
对于一个联合事件(A,B),可以将条件概率P(A|B)的公式表示为:
在这里插入图片描述

条件概率表示在事件B已经发生的条件下,事件A发生的概率。通常来说,条件概率可以反映两个事件之间的关系。比如:当P(A|B)>P(A),说明在B事件出现的条件下,A事件出现的概率比A事件的总体概率要高,A事件和B事件之间存在某种因果关系。当P(A|B)<P(A),说明B事件是阻止A事件发生的因素。P(A|B)=P(A),说明A事件和B事件之间没有关系,A事件和B事件独立。
贝叶斯准则关系式:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小灰灰的FPGA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值