基于YOLOv10的街道障碍物检测与应用

一、前言

随着智能城市和自动驾驶技术的快速发展,街道安全性逐渐成为关注的重点。在城市交通中,路面障碍物、行人、车辆等因素对交通流畅性和驾驶安全性产生了直接影响。如何快速、准确地识别和处理这些因素,成为现代智能交通系统中亟待解决的问题。

目标检测技术,特别是YOLO(You Only Look Once)系列,因其高效性和实时性,在智能交通领域得到了广泛的应用。本文将结合Street Hazards Dataset数据集,使用YOLOv10模型进行街道障碍物、行人、车辆等目标的实时检测,帮助大家理解如何通过深度学习实现高效的街道安全检测。

通过这篇博客,读者将深入学习如何利用YOLOv10进行目标检测、数据集处理、模型训练、评估,并搭建一个简单的UI界面用于展示检测结果。

二、Street Hazards Dataset概述
2.1 数据集介绍

Street Hazards Dataset 是一个专门用于街道障碍物检测的数据集,包含五个主要类别:道路障碍、行人、车辆、交通信号灯以及其他。该数据集旨在帮助自动驾驶系统、交通监控和安全检测系统更好地识别和定位路面上的各种潜在危险。

类别包括:

  • 道路障
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值