一、前言
随着智能城市和自动驾驶技术的快速发展,街道安全性逐渐成为关注的重点。在城市交通中,路面障碍物、行人、车辆等因素对交通流畅性和驾驶安全性产生了直接影响。如何快速、准确地识别和处理这些因素,成为现代智能交通系统中亟待解决的问题。
目标检测技术,特别是YOLO(You Only Look Once)系列,因其高效性和实时性,在智能交通领域得到了广泛的应用。本文将结合Street Hazards Dataset数据集,使用YOLOv10模型进行街道障碍物、行人、车辆等目标的实时检测,帮助大家理解如何通过深度学习实现高效的街道安全检测。
通过这篇博客,读者将深入学习如何利用YOLOv10进行目标检测、数据集处理、模型训练、评估,并搭建一个简单的UI界面用于展示检测结果。
二、Street Hazards Dataset概述
2.1 数据集介绍
Street Hazards Dataset 是一个专门用于街道障碍物检测的数据集,包含五个主要类别:道路障碍、行人、车辆、交通信号灯以及其他。该数据集旨在帮助自动驾驶系统、交通监控和安全检测系统更好地识别和定位路面上的各种潜在危险。
类别包括:
- 道路障