一、项目概述
随着太空探索的深入,轨道上的太空垃圾(Space Debris)数量日益增多。这些垃圾物体以高速运行,一旦撞击航天器或卫星,将造成极大的威胁。因此,构建一个基于深度学习的太空垃圾识别系统,具有重要的现实意义。
本项目旨在基于 YOLOv5 实现太空垃圾检测系统,配套构建简洁的 UI 图形界面,并提供可复用的数据集与完整代码,方便扩展训练和部署。
二、项目技术栈
- 目标检测框架:YOLOv5(Ultralytics)
- 图形界面:PyQt5(Python GUI)
- 训练平台:Python 3.8+,CUDA加速可选
- 数据集:SpaceNet Dataset、DARPASpaceData、Synthetic Debris Dataset(自制)
- 依赖管理:requirements.txt