1. 引言
随着城市交通压力不断加大,交通违规行为如闯红灯、逆行等严重威胁道路安全。基于深度学习的交通违规检测系统成为智能交通领域的研究热点。本文结合最新的YOLOv8目标检测算法和简洁实用的Python UI界面,实现了一个完整的交通违规行为检测系统,既适合教学,也能用于实际项目原型开发。
2. 交通违规行为检测简介
交通违规行为主要包括但不限于:
- 闯红灯
- 逆行
- 违法变道
- 超速
- 违规停车
其中闯红灯和逆行由于触发严重交通事故频率较高,检测需求较大。系统主要依赖摄像头实时采集交通场景视频,通过深度学习检测车辆及其行为模式,判断是否违规。
3. 相关技术概述
3.1 YOLOv8简介
YOLOv8是Ultralytics最新发布的目标检测算法,继承YOLO系列的高效和高精度特点,支持多种检测任务,代码结构简洁,训练方便,性能优异。相比YOLOv5/YOLOv7,YOLOv8改进了模型结构和训练技巧,适合实时交通视频分析。