对角标准型、Schur标准型和Jordan标准型的矩阵分解是线性代数中重要的三种矩阵分解方法。它们对应的原矩阵和变换矩阵各自需要满足不同的条件。下面分别说明这三种标准形的原矩阵和变换矩阵的要求:
1. 对角标准型(Diagonal Form)
-
原矩阵要求:
- 矩阵 A必须是可对角化的,也就是说,矩阵 A 的特征向量必须线性无关。
- 矩阵 A 必须有 n 个线性无关的特征向量(即特征值的代数重数等于几何重数),否则它不能对角化。
-
变换矩阵条件:
- 存在一个可逆矩阵 P,其列向量是矩阵 A 的线性无关的特征向量,使得:
其中,Λ 是一个对角矩阵,对角线上是 A 的特征值。
- 存在一个可逆矩阵 P,其列向量是矩阵 A 的线性无关的特征向量,使得:
-
特点:
- Λ 是 A的对角标准型,所有特征值位于对角线上。
- 只有在矩阵 A可对角化时,才能找到这样的变换矩阵 P。
2. Schur 标准型(Schur Triangular Form)
-
原矩阵要求:
- 对于任意方阵 A(实矩阵或复矩阵)都可以进行 Schur 分解,Schur 标准型存在,即使矩阵不可对角化。
-
变换矩阵条件:
- 存在一个酉矩阵(如果是复矩阵)或正交矩阵(如果是实矩阵) Q,使得:
其中,T 是一个上三角矩阵,
是 Q 的共轭转置(实数矩阵时是转置矩阵)。
- 存在一个酉矩阵(如果是复矩阵)或正交矩阵(如果是实矩阵) Q,使得:
-
特点:
- T 是 A 的 Schur 标准型,上三角矩阵 T 的对角线元素是 A 的特征值。
- Schur 标准型适用于所有方阵。
- Q 是一个酉矩阵(复数情况)或正交矩阵(实数情况),满足 Q
。
3. Jordan 标准型(Jordan Canonical Form)
-
原矩阵要求:
- 适用于任意方阵 A,无论 A 是否可对角化。即使矩阵的特征向量不够线性无关,Jordan 标准型仍然存在。
-
变换矩阵条件:
- 存在一个可逆矩阵 P,使得:
其中,J 是 Jordan 标准型矩阵,由 Jordan 块组成。
- 存在一个可逆矩阵 P,使得:
-
特点:
- J 是矩阵 A 的 Jordan 标准型。J 的对角线是 A 的特征值,副对角线上的 1 对应于广义特征向量。
- 如果矩阵 A 是可对角化的,则 J 就是一个对角矩阵;否则 J 是由 Jordan 块构成的。
- 适用于任意矩阵,不论是否对角化。
总结
标准型 | 原矩阵要求 | 变换矩阵 P/Q | 结果矩阵 |
---|---|---|---|
对角标准型 | 可对角化矩阵 | 特征向量构成的可逆矩阵 P | 对角矩阵 Λ |
Schur 标准型 | 任意方阵 | 酉矩阵或正交矩阵 Q | 上三角矩阵 T |
Jordan 标准型 | 任意方阵 | 广义特征向量构成的可逆矩阵 P | Jordan 矩阵 J |