旋转中心纠偏思路

本文详细介绍了机器视觉应用中的旋转中心标定步骤和思路,包括TCP标定与旋转中心标定的区别。通过九点标定、三点拟合圆等方法确定旋转中心,计算偏差并进行模板匹配,最后对放料位进行补偿,确保在不同角度下精确抓取和放置物料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么要进行旋转中心标定:

  • 在机器视觉实际应用过程中,有这样的案例:机械手要抓取物料,物料每次的角度不一样,机械手的末端工具中心与其自身的旋转中心不重合,如果想完成这个抓取的工作,有两种解决方案:
  • 1.TCP标定:本质是求俩个工具坐标系的矩阵关系
  • 2.旋转中心标定

旋转中心标定步骤及思路:

1.进行九点标定,并且记录U轴角度,标定时候角度不变,得到一个九点矩阵,这里得到的是在Tool0下的矩阵。 我们用新的工具末端去对点。

2.在像素坐标下,求三个Mark点。只旋转U轴,得到三个像素Mark点U1  U2  U3,并且记录mark点坐标,通过仿射变换求出实际位置,这里的实际位置是在tool0下的坐标。

3.三个实际位置的点可以拟合圆,求出圆心坐标(或者用拟合的手法-最小二乘法拟合)

因为这里像素坐标,转实际后࿰

图像纠偏是图像处理中的一项重要任务,它可以将倾斜的图像调整为水平或垂直方向。其中,傅里叶变换是一种经典的图像处理方法,它可以将图像转换到频域进行处理,从而实现图像的纠偏。 傅里叶变换是将一个时间或空间域的函数转换为频率域上的函数。在图像处理中,我们通常使用二维傅里叶变换来处理二维图像。具体来说,我们将一个二维图像表示为一个矩阵,然后将该矩阵进行傅里叶变换,得到一个频域上的矩阵。在频域中,我们可以通过调整不同频率的分量来改变图像的形状和方向。 图像纠偏的基本思路是将图像进行旋转,使得旋转后的图像在水平或垂直方向上更加对称。具体来说,我们可以将图像进行傅里叶变换,然后找到频域中的主要方向,将图像按照该方向进行旋转,最后再将旋转后的图像进行反变换,得到纠偏后的图像。 实现图像纠偏的关键是找到频域中的主要方向。一种常用的方法是使用Hough变换,它可以在频域中寻找直线。具体来说,我们可以将频域中的点看作是直线上的点,然后使用Hough变换找到频域中的主要直线。找到主要直线后,我们就可以将图像按照该直线进行旋转,从而实现图像的纠偏。 总之,傅里叶变换是图像处理中非常重要的一种方法,它可以将图像转换到频域进行处理,从而实现图像的纠偏等操作。当然,傅里叶变换并不是唯一的图像处理方法,还有很多其他的方法可以用来处理图像。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值