多模态RAG的一些理论方法,分为两类,一种是解析式文档多模态RAG(将一个文档切分为页面,然后再用版式识别的方式对文档进行各种模态元素进行分割、解析、提取,然后再嵌入、检索);另一种是DocVQA式文档多模态RAG(将文档切分为页面图像,不再细分,然后根据页面图像级别进行检索,类似于docvqa),而纸上得来终觉浅,绝知此事要躬行,我们来讲讲几个多模态RAG的四个简单动手实践脚本。
另一个是关于RAG切分的开源工具Chonkie,对于RAG切分不熟悉的,可以跑一跑看看。
坚持,总是会有收获的。
一、多模态RAG的四个简单动手实践脚本
至于动手环节,目前已经有一些可以实践的项目,如https://github.com/kyryl-opens-ml/vision-retrieval、Byaldi(https://github.com/AnswerDotAI/byaldi)、colpali(https://github.com/illuin-tech/colpali)
而作为一个汇总,我们可以看《Vision Augmented Retrieval and Generation》(https://github.com/adithya-s-k/VARAG)项目,可以用来练手,支持四种模式,其中的.py文件为执行脚本。
1、Simple RAG (with OCR,https://github.com/adithya-s-k/VARAG/blob/main/examples/textDemo.py),通过Docling集成了OCR,使扫描的PDF或图像能够处理和索引。 文本提取和索引后,查询可以与文档中的相关段落相匹配,适合扫描书籍、合同和研究论文等文本。
2、Vision RAG(https://github.com/adithya-s-k/VARAG/blob/main/examples/visionDemo.py),通过结合视觉信息的检索来扩展传统的RAG技术,弥合文本和图像之间的差距。 使用强大的跨模态嵌入模型,如JinaCLIP(由Jina AI开发的CLIP的变体),文本和图像都被编码为共享矢量空间。这允许跨不同模态之间进行相似性搜索,图像可以与文本一起查询。
3、ColPali RAG(https://github.com/adithya-s-k/VARAG/blob/main/examples/colpaliDemo.py),通过将文档页面直接嵌入为图像,而不是将其转换为文本。 从昨天的文章中,我们知道,这种方式传统的检索piepline,利用了视觉语言模型(VLM)PaliGemma,该模型将整个文档页面编码为嵌入,将页面布局和视觉元素视为检索过程的一部分。使用受ColBERT(列BERT)启发的后期交互机制,ColPali RAG通过在用户查询和文档补丁之间启用令牌级匹配来增强检索。因为传统的基于文本的检索方法很困难。这种方法确保了高检索精度,同时保持了合理的索引和查询速度,对视觉效果丰富的文档特别有益,如信息图表、表格和复杂的布局,
4、Hybrid ColPali RAG(https://github.com/adithya-s-k/VARAG/blob/main/examples/hybridColpaliDemo.py), 通过结合图像嵌入和ColPali的后期交互机制的优势,进一步提高检索性能。首先使用图像嵌入(例如,从JinaCLIP等模型)执行粗略的检索步骤,以检索前k的相关文档页面。然后,使用ColPali后期交互机制对这k页进行重新排名,以根据视觉和文本信息识别最相关的页面集合。
二、关于RAG切分的开源工具Chonkie
RAG切分的方式,其实我们已经讲过很多了,但对于小白而言,可以有更多选择,例如Chonkie(https://github.com/bhavnicksm/chonkie,https://pypi.org/project/chonkie/),提供了几种方式的封装调用:
`First import the chunker you want from Chonkie from chonkie import TokenChunker # Import your favorite tokenizer library # Also supports AutoTokenizers, TikToken and AutoTikTokenizer from tokenizers import Tokenizer tokenizer = Tokenizer.from_pretrained("gpt2") # Initialize the chunker chunker = TokenChunker(tokenizer) # Chunk some text chunks = chunker("Woah! Chonkie, the chunking library is so cool!", "I love the tiny hippo hehe.") # Access chunks for chunk in chunks: print(f"Chunk: {chunk.text}") print(f"Tokens: {chunk.token_count}")`
1)TokenChunker:Splits text into fixed-size token chunks;
2)WordChunker: Splits text into chunks based on words;
3)SentenceChunker: Splits text into chunks based on sentences;
4)SemanticChunker: Splits text into chunks based on semantic similarity;
5)SDPMChunker: Splits text using a Semantic Double-Pass Merge approach共5种切分方式,再想详细参考细节,可以看https://github.com/bhavnicksm/chonkie/blob/main/DOCS.md,
当然,也有一些对比结论:https://github.com/bhavnicksm/chonkie/blob/main/benchmarks/README.md,跟其他切分组件(如LangChain、LlamaIndex)的对比,如下:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。