DeepSeek与医院现有系统的深度融合是一个复杂而细致的过程,旨在通过AI技术提升医院的智能化管理水平,优化医疗流程,提高医疗服务质量。以下是对DeepSeek如何与医院现有系统深度融合的详细阐述:
一、技术实现方式
01
API接口对接
• DeepSeek通过提供丰富的API接口,可以与医院现有的HIS(医院信息系统)、LIS(实验室信息系统)、PACS(影像归档和通信系统)等系统进行无缝对接。
• 通过API接口,DeepSeek能够实时获取患者的病历、检查结果、影像资料等数据,为智能化管理提供数据支持。
02
微服务架构
• DeepSeek采用微服务架构,将各个功能模块拆分成独立的服务,方便与医院现有系统进行集成和扩展。
• 这种架构使得DeepSeek能够灵活地适应医院不同业务场景的需求,提高系统的可扩展性和可维护性。
03
容器化部署
• DeepSeek支持容器化部署,可以方便地在医院现有的IT基础设施上进行部署和运行。
• 容器化部署提高了系统的稳定性和可靠性,降低了部署和维护成本。
二、具体融合场景
01
与HIS系统的融合
• DeepSeek可以与HIS系统深度融合,实现病历的自动生成、质控和管理。
• 通过与HIS系统的对接,DeepSeek能够实时获取患者的病历数据,为医生提供智能化的诊疗建议,提高诊断的准确性和效率。
• 同时,DeepSeek还可以对病历进行质控,检查病历的完整性、规范性等,提高病历的质量。
02
与LIS系统的融合
• DeepSeek可以与LIS系统深度融合,实现检验结果的智能分析和解读。
• 通过与LIS系统的对接,DeepSeek能够实时获取患者的检验结果数据,为医生提供基于检验结果的诊疗建议。
• 同时,DeepSeek还可以对检验结果进行智能分析,识别异常模式和潜在问题,辅助医生做出更科学的决策。
03
与PACS系统的融合
• DeepSeek可以与PACS系统深度融合,实现影像数据的智能分析和辅助诊断。
• 通过与PACS系统的对接,DeepSeek能够实时获取患者的影像数据,为医生提供基于影像的诊疗建议。
• 同时,DeepSeek还可以对影像数据进行智能分析,识别病灶、测量参数等,提高诊断的准确性和效率。
三、实施步骤
01
需求调研与分析
• 在与医院现有系统融合之前,需要对医院的需求进行深入的调研和分析,明确融合的目标和范围。
• 根据医院的具体需求,制定详细的融合方案和实施计划。
02
系统对接与测试
• 按照融合方案和实施计划,对DeepSeek与医院现有系统进行对接和测试。
• 确保各个系统之间的数据能够正常流通和共享,功能能够正常运行。
03
人员培训与支持
• 对医院的相关人员进行培训,使他们能够熟练使用DeepSeek系统。
• 提供必要的技术支持和维护服务,确保系统的稳定运行和持续优化。
四、案例分享
案例分享
• 天门市第一人民医院:成功完成了国产人工智能平台DeepSeek-R1的本地化部署,实现了与医院HIS、EMR、LIS、PACS等核心业务系统的深度集成。通过智能交互和精准诊疗,为患者提供了更加精准、高效、智能的医疗服务体验。
• 厦门大学附属第一医院:将电子病历系统接入本地化部署的DeepSeek大模型,实现了AI自动识别患者病历资料、结合医生提问进行精准的数据分析、思考和问答等功能。显著提高了医生的工作效率和诊断准确性。
概括而言,DeepSeek通过API接口对接、微服务架构、容器化部署等技术实现方式,与医院现有的HIS、LIS、PACS等系统进行深度融合。通过具体的融合场景和实施步骤,DeepSeek为医院提供了智能化的医疗服务和管理解决方案,提高了医疗效率和质量,优化了患者体验和医院管理。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。