Nature正刊发表创新多模态预测模型——整合临床自由文本信息以提升患者预后预测能力

Nature |精准医疗新突破:多模态数据融合与NLP技术引领癌症预测进入新时代

发表在期刊《Nature》文章《Automated real-world data integration improves cancer outcome prediction》文章通过研究自动化技术对来自真实世界的数据(如患者的临床信息、生活习惯、治疗历史等)进行有效整合,能够显著提高癌症预后预测的准确性和能力。在癌症治疗中,传统的预后预测模型通常依赖于实验室数据和临床试验结果,但现实中的患者数据往往具有更高的复杂性和多样性。自动化的整合方法能够处理大量的非结构化和结构化数据,从而为医生提供更为精准的个性化治疗方案预测,有助于提高治疗效果和患者生存率。

01.引言

论文探讨了通过整合数字化患者报告的临床基因组学数据,结合自然语言处理(NLP)技术与多模态生物标志物,来提高肿瘤患者总生存期(OS)预测的准确性。随着医疗数据数字化的不断发展,患者报告的基因组学数据为肿瘤精准医疗提供了宝贵的信息。研究通过运用NLP技术解析患者报告中的关键临床信息(如肿瘤转移部位和治疗史等),并将这些信息与其他生物标志物(如基因组学和病理学数据)结合,构建了多模态数据集。该数据集全面反映了患者的肿瘤特征,并为后续的预后预测提供了丰富的基础。文章通过应用先进的算法和模型,旨在显著提高OS预测的准确性,从而为肿瘤患者的个性化治疗和临床决策提供更加精准的支持。该研究不仅有助于推动精准医疗的发展,还期望通过提高预后预测的精度,提升整体医疗水平。文章的研究框架涉及数据收集、预处理、模型构建和验证等关键步骤,为读者提供了研究思路和方法的清晰概述。

02.模型介绍

文章中介绍的模型架构主要基于自然语言处理(NLP)技术,并涉及多个模块以处理和分析临床、基因组学、影像组学和病理学数据。

一、数据预处理模块

  • 功能:此模块主要负责将原始的临床文本数据(如放射学报告、临床医生笔记和病理学报告)进行预处理,以便后续的NLP分析。预处理可能包括文本清洗(去除无关字符、标准化医学术语等)、分词、词性标注等步骤。

二、NLP标注模块

  • 功能:该模块利用NLP技术,如基于Transformer的大规模上下文感知架构,对预处理后的临床文本进行自动标注。这些标注可能包括疾病部位、癌症进展情况、治疗历史、激素受体状态等关键信息。NLP模型能够识别并提取这些关键特征,为后续的模型训练和验证提供数据支持。

三、特征提取模块

  • 功能:此模块从NLP标注结果中进一步提取用于模型训练和预测的特征。这些特征可能包括基于文本的定量和定性信息,如肿瘤大小、转移情况、治疗反应等。特征提取的目的是将文本数据转化为数值数据,以便用于机器学习模型的训练和预测。

四、模型训练与验证模块

  • 功能:在提取了足够的特征后,该模块使用这些数据来训练机器学习模型。模型可能包括基于NLP的Transformer模型、逻辑回归模型、前馈神经网络等。训练过程中,模型会学习如何从临床文本中提取关键信息,并基于这些信息进行预测。同时,该模块还会对模型进行验证,以评估其性能和泛化能力。

五、预测与决策支持模块

  • 功能:经过训练和验证后的模型可以应用于实际的临床场景中,进行预测和决策支持。例如,模型可以根据患者的临床文本数据预测癌症的转移情况、治疗效果等。这些预测结果可以为医生提供有价值的参考信息,帮助他们制定更个性化的治疗方案。

六、多模态数据整合模块

  • 功能(在文章中有所提及,但可能不是核心模型架构的一部分):该模块负责将临床文本数据与其他类型的数据(如基因组学、影像组学和病理学数据)进行整合。通过整合多模态数据,可以进一步提高模型的预测性能和临床应用价值。例如,结合基因组学数据可以揭示与癌症转移相关的基因变异;结合影像组学数据可以评估肿瘤的形态和功能特征等。

模型架构示意图

03.研究结果

文章研究成果介绍

该文章的研究主要围绕利用自然语言处理(NLP)和多模态数据来提升对癌症患者临床结果预测的准确性。以下是详细的实验研究及其结果数据:

实验研究

  1. 数据集的构建
  • 研究团队从Memorial Sloan Kettering Cancer Center(MSKCC)获取了24,950名患者的数据,涵盖了非小细胞肺癌、乳腺癌、结直肠癌、前列腺癌和胰腺癌。

  • 数据包括临床、基因组、影像学和病理学报告,通过NLP技术进行解析和整合,形成了一个名为MSK-CHORD的多模态数据集。

  1. NLP技术的应用
  • 使用NLP技术从非结构化的文本数据中提取关键信息,如患者的病史、治疗过程、影像学和病理学报告等。

  • 对比了不同NLP模型的性能,发现基于Transformer架构的模型在标注质量上表现优于逻辑回归和前馈神经网络。

  1. 多模态模型的构建与验证
  • 结合NLP提取的特征和已有的结构化数据(如治疗信息、生存数据、肿瘤登记数据等),构建了多模态预测模型。

  • 通过交叉验证和外部验证的方式,评估了多模态模型在预测癌症患者临床结果上的性能。

结果数据

  1. NLP模型的性能
  • 在不同癌症类型中,NLP模型的性能表现相对稳定,除了非小细胞肺癌(NSCLC)中既往治疗的识别,其精确度为0.78,但AUC为0.98,召回率为0.92。

  • NLP模型在未见过的癌症类型中仍能保持较好的泛化性能。

  1. 多模态模型的预测性能
  • 在所有癌症类型中,多模态模型比仅使用单一模态数据的模型(如仅使用肿瘤标志物或部位数据)具有更高的预后能力。

  • 对于胰腺癌等数据类型较稀疏的癌症,多模态模型在交叉验证中显示了显著的预后价值,但在非MSK BPC验证队列中性能有所下降。

  • 特定特征在不同癌症类型中对多模态预后模型的影响不同,但多模态模型在所有癌症类型中均显示出对总生存期(OS)的预后能力。

  1. 特定基因和临床特征的分析
  • 分析了SETD2基因改变与OS的关联,发现SETD2改变与更好的OS相关,并且在有中枢神经系统(CNS)转移注释的数据集中,SETD2改变与较低的CNS转移率相关。

  • 探讨了吸烟状态与基因组特征的关系,发现吸烟与EGFR或KRAS基因的改变相关。

  1. 预测模型的验证
  • 研究了多模态模型在预测肺癌免疫治疗反应中的应用,发现模型能够准确预测免疫治疗的效果。

  • 验证了模型的泛化能力,通过在不同数据集上进行训练和验证,证明了模型的稳定性和可靠性。

综上所述,该研究通过构建多模态数据集和应用NLP技术,成功提升了癌症患者临床结果的预测准确性。研究结果为癌症的精准医疗和个性化治疗提供了有力支持。

研究结果图一

研究结果图二

研究结果图三

04.研究意义

  1. 推动了癌症精准医疗的发展
  • 通过整合临床、基因组、影像学和病理学等多模态数据,该研究为癌症的精准医疗提供了更为全面和准确的信息基础。

  • NLP工具的应用使得大量存在于自由文本报告中的关键信息得以自动提取和结构化,为临床决策提供了有力支持。

  1. 提高了癌症预测模型的准确性
  • 研究中开发的NLP模型在多个癌症类型上均表现出较高的准确性,为癌症的预测和预后评估提供了新的工具。

  • 通过整合多模态数据,构建出的预测模型能够更准确地预测患者的临床结果,如生存期、治疗反应等。

  1. 促进了癌症研究的数据共享和合作
  • 文章所介绍的研究方法和数据集(如MSK-CHORD)为其他研究者提供了宝贵的资源和参考。

  • 该研究的成功也展示了跨学科合作和数据共享在推动癌症研究进步中的重要性。

  1. 提升了公众对癌症研究的认识
  • 该文章发表在《Nature》这一顶级学术期刊上,吸引了广泛的关注和讨论。

  • 通过介绍该研究的重要性和成果,提升了公众对癌症研究的认识和关注度,有助于推动社会对癌症防治的投入和支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值