手把手教你AnythingLLM+Ollama+qwen 部署本地大模型

利用周末的时间,在自己的笔记本电脑上部署一个本地大模型,过程也记录下来分享给对此有兴趣的朋友们。

步骤】

模型相关的基础概念这里不多赘述了,直接进入实战。

整个部署过程分为三个步骤:

步骤一:下载ollama大模型工具

步骤二:在ollama工具中,下载通义千问大模型

步骤三:下载AnythingLLM并配置选择ollama的通义千问模型,直接在窗口对话

【逐步骤讲解】

官网下载ollama

https://ollama.com/download

安装后启动ollama

命令行窗口,敲入命令ollama list,此时显示没有任何大模型,开始去下载

下载大模型,阿里千问 0.5b (5亿参数)

ollama run qwen:0.5b

特意一早爬起来,网速快得飞起。小400M不到一分钟下载完成。

下载完成后,简单问一个小问题,看看反应如何?

0.5b是通义千问最小的一个模型,安装在普通笔记本上,反应速度还可以。返回的内容也还行,自己做练习搞点小研究足够了。

命令扩展:命令行窗口可以查看模型相关的信息

lollama list:显示模型列表。

lollama show:显示模型的信息

lollama pull:拉取模型

lollama push:推送模型

lollama cp:拷贝一个模型

lollama rm:删除一个模型

lollama run:运行一个模型

有条件的话,机器配置也能跟得上,可以下载更大的模型,如下表:

模型

参数

大小

下载

Llama 2

7B

3.8GB

ollama run llama2

Mistral

7B

4.1GB

ollama run mistral

Dolphin Phi

2.7B

1.6GB

ollama run dolphin-phi

Phi-2

2.7B

1.7GB

ollama run phi

Neural Chat

7B

4.1GB

ollama run neural-chat

Starling

7B

4.1GB

ollama run starling-lm

Code Llama

7B

3.8GB

ollama run codellama

Llama 2 Uncensored

7B

3.8GB

ollama run llama2-uncensored

Llama 2 13B

13B

7.3GB

ollama run llama2:13b

Llama 2 70B

70B

39GB

ollama run llama2:70b

Orca Mini

3B

1.9GB

ollama run orca-mini

Vicuna

7B

3.8GB

ollama run vicuna

LLaVA

7B

4.5GB

ollama run llava

Gemma

2B

1.4GB

ollama run gemma:2b

Gemma

7B

4.8GB

ollama run gemma:7b

Ollama服务默认地址和端口是http://127.0.0.1:11434/

服务开启时,访问该地址会返回 Ollama is running

不过只能在命令行中玩耍还是不太方便,想个办法弄个网页版的,像chatgpt页面一样。

下载Anythingllm结合ollama使用。(这个文件有点大,干掉6个多G)

Anything下载地址https://anythingllm.com/desktop

安装后直接打开,创建新工作区

下面小扳手是设置,打开之后,LLM提供商选择上面步骤安装的ollama,模型选择上面安装的qwen0.5b大模型。其他的默认不需修改

保存后,返回到我的工作区,聊天窗口可以愉快地体验自己部署的本地大模型啦。

到此为止,一个AnythingLLM+Ollama+qwen0.5b的本地大模型就部署好了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 部署Ollama Qwen模型 为了在本地环境中成功部署OllamaQwen模型,需遵循特定配置流程。首先,确保安装有支持CUDA的NVIDIA GPU以及相应的驱动程序,因为大多数大型语言模型(LLM),包括Qwen,在GPU上运行效率更高[^2]。 接着,环境准备阶段涉及创建虚拟环境并安装必要的依赖库。对于Python开发而言,推荐使用`conda`来管理不同版本间的兼容性问题: ```bash conda create -n qwen_env python=3.9 conda activate qwen_env pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 随后,获取Qwen模型及相关资源文件至关重要。这通常通过官方GitHub仓库或其他可信渠道下载完成。假设已从指定位置获得预训练权重与配置文件,则可继续进行加载操作: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path_to_qwen_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).cuda() ``` 最后一步是设置API接口以便于外部调用。可以利用Flask或FastAPI这样的微服务框架快速搭建RESTful API服务器,从而实现与其他应用程序交互的功能。下面是一个简单的例子展示如何启动一个基于FastAPI的服务端口监听命令: ```python from fastapi import FastAPI import uvicorn app = FastAPI() @app.post("/generate/") async def generate_text(prompt: str): inputs = tokenizer(prompt, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": result} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000) ``` 上述过程概述了在本地机器上部署和运行Ollama Qwen模型所需的主要步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值