Nature Communications近期的研究提出了一种用于低剂量肺部CT肺癌筛查的医学多模态多任务基础模型,非常适合各位读者学习参考来提升自身研究的创新性。尤其是其中的CTViT组件通过多尺度线性分词器和解耦的物理尺寸嵌入机制实现了尺寸感知,更是让人耳目一新。
引言
肺癌是全球范围内发病率和死亡率最高的癌症之一。尽管近年来医学领域在肺癌早期筛查、靶向治疗和免疫治疗方面取得了一定进展,但其高致死率依然令人关注。低剂量肺部CT作为一种肺癌筛查手段,已被证明能够有效降低高风险人群的肺癌死亡率。然而,低剂量肺部CT的应用一方面面临着假阳性率较高的问题,另一方面面临着放射科医师短缺的现状。
随着人工智能研究在医学领域的深入,面向肺癌筛查任务已积累了大量的多模态数据,包括低剂量肺部CT图像、病理结果以及临床数据等。同时,随着大模型的出现,基础模型也在生物医学领域展现出前所未有的能力。基于人工智能技术开展研究,有望显著提升肺癌筛查的质量和效率。
Nature Communications近期的研究提出了一种用于低剂量肺部CT肺癌筛查的医学多模态多任务基础模型,通过大规模的多模态和多任务学习,该模型各类肺癌筛查任务展现出卓越的诊断能力。
数据及方法
该研究的数据收集自于美国的两个数据中心及两个医学机构,通过医学任务定义、特定任务的多模态数据收集、多模态数据处理以及多模态问答构建四个步骤进行数据集构建。该研究整理的多模态多任务数据集涵盖49种临床数据类型、163725例胸部CT影像序列和17个肺癌筛查相关任务。
该研究提出的医学多模态多任务基础模型旨在有效编码多模态数据,并通过文本提示在统一且可扩展的方式下灵活执行多种任务,主要包含CTViT、文本Transformer、任务编码器和预测器四个组件。
CTViT负责处理和提取CT图像的多尺度特征。它通过将3D CT图像切分为非重叠的3D小块(图像Token),并利用多尺度CT标记器和图像编码器来提取有效的特征表示。CTViT还通过引入正弦余弦函数来编码图像的物理尺寸,进一步提升了模型在处理不同患者图像时的灵活性和准确性,使得即使在没有重采样CT图像的情况下,也能实现尺寸感知和高效的特征提取。
文本Transformer负责处理临床文本数据和任务描述。它采用字节对编码器(BBPE)对患者的临床信息(如年龄、性别、病史等)和任务指令(如"预测肺癌风险")进行编码,将文本信息转化为适合后续处理的嵌入表示。
任务编码器负责提取与特定任务相关的特征。在多模态数据输入下,任务编码器利用一个特殊的Token来识别整合不同模态的特征,生成与任务相关的任务特征,供后续的任务预测器使用。
预测器根据任务特定的嵌入特征输出最终结果。根据任务的不同,M3FM使用不同的预测器,或对于相同的输出维度,可能共享相同的预测器。预测器能够处理分类问题、回归问题等多种任务,如风险预测、图像分割等。
总结
综合而言,在数据方面,该研究整理了涵盖49种临床数据类型、163725例胸部CT影像序列和17个肺癌筛查相关任务的多模态多任务数据集,并提供OpenM3Chest可供大家下载;在方法创新方面,CTViT通过多尺度线性分词器和解耦的物理尺寸嵌入机制,能够灵活地处理多种尺寸的图像。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。