Bioinformatics 2024| CE-DTI:基于图生成和多源信息融合的因果增强药物-靶标相互作用预测

今天给大家介绍的是东北林业大学汪国华老师团队发表在Bioinformatics2024上的一篇论文:Causal enhanced drug–target interaction prediction based on graph generation and multi-source information fusion

01 前言

药物-靶标相互作用预测是生物医学领域的重要任务,有助于发现药物的潜在靶点并开发更有效、降低副作用的靶向治疗方法。尽管已有多种基于异构信息网络的预测方法,但在捕捉药物与靶标之间的基本相互作用和确保模型可解释性时仍存在挑战,且通常需要人工构建元路径或进行大量特征工程。为此,作者提出了一种新的方法——集成图生成和多源信息融合的因果增强药物-靶标相互作用 (CE-DTI) 预测。首先,通过自动图生成对药物和靶标的多源信息进行建模,构建药物-靶标对网络,将相互作用的预测转化为节点分类问题。方法将影响中心节点的周围节点分为因果变量节点和非因果变量节点,其中因果变量节点对分类结果有显著影响。作者利用因果不变性增强药物-靶标对网络的对比学习,结果表明该方法在多个数据集上的表现优于其他基准方法。同时,实验还显示因果增强策略能够探索药物-靶标之间的潜在因果关系,并识别新的靶标。案例研究进一步验证了该方法在识别潜在药物靶标方面的有效性。

02 方法

图1 CE-DTI整体流程图

2.1 图生成与多源信息融合

在该方法中,数据源被视为网络节点,节点之间的边表示数据之间的关系。通过图生成模型,作者能够有效整合药物的化学性质、疾病信息和副作用等多种信息,从而减少对先验知识的依赖,并允许网络根据新数据进行更新。作者首先为每种药物和靶标获取多源信息嵌入,分别表示为 和 , , 其中n和m分别表示药物和靶标的数量,p和q分别表示不同信息源的数量,d表示嵌入的维度。对于随机选取的第 i种药物,其多源信息嵌入为 。基于此嵌入构建生成图的邻接矩阵 ,生成过程如下:

接下来,作者通过药物的多源信息乘积生成邻接矩阵A。在生成过程中,利用可学习的阈值 k自动调整矩阵中的元素,如果某个元素的值超过k,则在相应位置设置为 1,表示该药物与靶标之间存在关联。然后,作者采用图注意力网络(GAT)对生成的图进行深度表示学习。对于每种药物,基于其多源信息构建邻接矩阵,并通过GAT的注意力机制区分来自不同信息源的节点的重要性。GAT模块确保不同来源的信息能够有效传输和整合。

通过均值池化,作者合并通过GAT表示学习获得的嵌入,以实现信息的融合,而不影响数据的准确性。最终得到了全面表示每种药物特征的嵌入。总体而言,该方法通过图生成和深度学习技术,有效地将药物和靶标的多源信息整合在一起,构建了一个灵活且可更新的药物-靶标相互作用预测框架,旨在提高预测的准确性和可解释性。

2.2 DTI 预测的因果不变性框架

在图结构中,作者假设图中节点的邻居分为两类变量节点:因果变量节点集 和非因果变量节点集 。因果变量节点在图表示学习过程中,显著影响中心节点的分类任务的结果,而非因果变量集贡献不大。此外,因果节点集合和非因果节点集合互不影响。为了提高图结构的代表性,使模型能够更有效地提取因果变量,作者引入了一种图结构的随机增强策略。在对图结构进行编码之前,作者屏蔽原始图结构中节点嵌入的某些维度或节点之间的关联,从而在每轮训练之前对图结构引入扰动。在该策略下,作者构建了两个增强图:

然而,随机增强策略无法确保图扰动后因果节点集的稳定性。该策略可能会将非因果信息整合到药物-靶标对(DTP)节点嵌入中,当非因果变量发生变化时,模型需要能够准确提取因果信息并滤除非因果干扰。因此,作者的增强策略的关键在于,在保持因果变量集稳定性的同时,选择性地扰动非因果变量集。这种方法能够确保因果变量的稳定性,从而在模型中有效地提取和维护关键的因果关系,提升预测的准确性和可解释性:

其中符号 表示对非因果因素进行干预,鼓励模型只关注从因果因素中提取的信息,同时忽略任何无关紧要的信息。最近的研究中提到通过扰动初始图的结构可以改变其频谱中节点信息的频率强度。不同的频率成分携带不同级别的信息,对图结构的影响也不同,其中高频成分往往比低频成分表现出更大的信息差异。因此,有理由将低频成分视为不变的因果信息,它在图的不同视图中保持一致。考虑到在图增强过程中不能依赖标签信息,需要采用一种新的方法来保持因果信息的不变性,同时允许非因果信息的扰动。因此,作者修改了模型的目标函数,以因果关系变量(即因果效应)为目标,这些变量应满足在不同的非因果扰动下因果关系一致的条件:

2.3 模型优化

基于上述计算,可以得到两个增强图的嵌入。为了鼓励嵌入在增强图中保持不变,作者提出了一个学习目标,它强制增强图使其沿维度遵循相同的均值和方差,从而在统计意义上对嵌入表示施加正则化。学习目标可以形式化为:

与以往研究类似,作者将药物-靶标相互作用预测任务建模为二分类任务,旨在识别药物与靶标之间是否存在相互作用,即Y属于{0,1}⁠ . 预测结果与真实值标签之间的损失函数如下:

最后,模型的优化目标由两部分组成:分类交叉熵损失和对比损失

03 实验

3.1 基准比较

针对DTI预测任务进行了全面的比较,在两个数据集上评估了模型,并将其与五种主流方法进行了比较。相应的AUROC和AUPR结果如图2所示。

表1 CE-DTI 模型与基线方法的AUROC 和 AUPR 值比较

3.2 因果不变性分析

实验表明,针对因果不变性的优化对模型训练有积极的作用。在该优化框架下,图增强策略的应用对于模拟生物过程的不确定性、提高模型泛化能力、适应数据扰动等具有极其重要的作用。为进一步验证因果不变性框架能否为节点分类提供有效信息,作者选取两个增强图中变化较小的节点作为训练集,测试模型的泛化性能。实验证明,即使只使用少量因果节点作为训练集,也能取得良好的模型泛化效果。另一方面,作者也尝试探究扰动因素对实验结果的影响以及所采用方法的鲁棒性。实验中作者设置了5个不同程度的扰动率[0.2, 0.3, 0.4, 0.5, 0.6]来对图进行扩充。实验结果如图3所示,其中每一个点代表不同扰动率对图结构进行扰动的结果。扰动率的选择直接影响模型的学习过程,较低的扰动率(比如0.2)可能无法提供足够的变化,而较高的扰动率(比如0.5及以上)可能会破坏图的核心结构,导致模型无法识别真实的药物-靶标关系。

表2 因果不变性分析

3.3 图生成有效性分析

在本节中,作者通过分析基于图生成的多源信息融合方法生成的图来评估所提出的图生成方法的有效性。具体来说,作者将每种药物的多源信息嵌入转换为子图的权重并对其进行可视化。如图4所示,该图说明了每个信息源与剩余源之间的连接权重。从图4a的结果可以看出,文本信息源和药物副作用信息源在生成的图中占有更大的权重,突出了这两个特征对模型性能的重要性,并强调了整合这些来源以获得最佳结果的必要性。消融实验结果支持这一结论,显示在删除文本信息源后模型的泛化性能下降,这进一步表明文本源中包含的关于药物分子特性的描述数据具有丰富的价值。

图2图生成有效性分析

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值