Agentic AI 系统设计:第一部分 Agent 架构

如何构建一个有效运作的 AI Agent 系统?又如何在开发过程中发现那些可能会在投入生产后引发巨大麻烦的潜在问题呢?

要回答这些问题,你需要将Agent系统分解为三个部分:工具、推理和行动。每一层都有其自身的挑战。一个层次的错误可能会波及到其他层次,以意想不到的方式引发故障。检索功能可能会提取出不相关数据。推理不当可能会导致不完整或循环的工作流程。行动在生产中可能会失误。

Agent 系统只在其最薄弱的环节处才显得强大,本指南将向你展示如何设计避免这些陷阱的系统。目标是:在最关键的时候构建出可靠、可预测且有韧性的代理。

架构概览

Agent 系统在三个逻辑层面上运行:工具层、推理层和行动层。每一层都有其特定的作用,使代理能够有效地检索、处理和行动信息。理解这些层之间的相互作用对于设计既实用又可扩展的系统至关重要。

下面的图表展示了这三个层面及其内部的组成部分:

工具层:系统的基石。这一层与外部数据源和服务进行交互,包括API、向量数据库、运营数据、知识库和用户交互等。它负责获取系统所依赖的原始信息。设计良好的工具能够确保代理高效地检索相关、高质量的数据。

行动层:有时也称为编排层。这一层负责协调大型语言模型(LLM)与外部世界(工具)之间的交互。它处理与用户的交互(如适用)。它接收来自LLM的关于下一步要采取的行动的指令,执行该行动,然后将结果提供给推理层的LLM。

推理层:系统智能的核心。这一层利用大型语言模型(LLM)处理检索到的信息。它确定代理下一步需要做什么,借助上下文、逻辑和预定义的目标来做出决策。推理不当会导致错误,如重复查询或行动不一致。

Agentic工作流

行动/编排层是推动代理系统行为向前发展的主要引擎。这一层提供了一个主要的处理循环,大致如下所示:

Agent 应用与大型语言模型(LLM)之间的首次交互定义了系统试图实现的总体目标。这可以是任何事情,从生成房地产列表到撰写博客文章,再到处理在客户支持应用中等待的用户的开放式请求。

除了这些指令,还有一个LLM可以调用的函数列表。每个函数都有一个名称、描述以及它接受的参数的JSON模式。这个简单的函数示例来自OpenAI的文档:

{`  `"model": "gpt-4o",`  `"messages": [`    `{`      `"role": "user",`      `"content": "What's the weather like in Boston today?"`    `}`  `],`  `"tools": [`    `{`      `"type": "function",`      `"function": {`        `"name": "get_current_weather",`        `"description": "Get the current weather in a given location",`        `"parameters": {`          `"type": "object",`          `"properties": {`            `"location": {`              `"type": "string",`              `"description": "The city and state, e.g. San Francisco, CA"`            `},`            `"unit": {`              `"type": "string",`              `"enum": ["celsius", "fahrenheit"]`            `}`          `},`          `"required": ["location"]`        `}`      `}`    `}`  `],`  `"tool_choice": "auto"``}

由推理层中的大型语言模型(LLM)来决定下一步应该调用哪个函数,以便更接近实现指定的目标。

当LLM做出响应时,它会指出应该调用哪个函数以及应提供给该函数的参数。

根据用例以及推理层中所使用的LLM的能力,LLM可能能够指定一组应被调用的函数(理想情况下是并行调用),然后才进入循环的下一个环节。

提供一个退出函数是个好主意,这样推理层就可以在完成处理时发出信号,告知行动层可以成功退出。

设计原则

表面上,这一切看起来都很简单。然而,随着任务复杂性的增加,函数列表也随之增长。需要处理的方面越多,推理层就越容易出错。一旦你开始添加新的API、专业子代理和多个数据源,你就会发现,要管理的远不止是插入一个提示然后点击“开始”那么简单。

在第二部分中,我们将深入探讨模块化的概念。我们会讨论为什么将你的代理系统分解为更小、更专注的子代理,能帮助你避免单体设计的陷阱。

每个子代理都可以处理其自身专门的领域——退货、订单、产品信息等,这种分离使得父代理能够自由地分配任务,而无需在一个庞大的提示中同时处理所有可能的函数。

在第三部分中,我们将深入探讨代理之间的交互。即使有了很好的模块化,构建统一的接口以允许子代理以一致的方式进行交互仍然是一个真正的挑战。我们将探讨如何定义清晰、标准化的交接流程,让每个代理都能完成自己的工作,而不会形成一个令人困惑的调用和回调网络。你会看到为什么拥有一个一致的接口很重要,以及这如何帮助你在出现问题时进行故障排除或升级问题。

在第四部分中,我们将研究数据检索和检索增强生成(RAG)。如果没有最新、相关数据,你的语言模型所能做的也是有限的,因此我们将讨论如何连接到数据库、API和向量存储,以提供你的代理所需的上下文。我们将涵盖从现有系统中提取结构化数据到索引PDF等非结构化内容的一切内容,以确保你的系统在扩展时仍然快速且准确。

最后,在第五部分,我们将探讨横向关注点。这包括设计任何健壮的代理系统时至关重要但又容易被忽视的方面——可观测性、性能监控、错误处理、安全性、治理和伦理。这些要素决定了你的代理是否能够处理现实世界的流量、保护用户数据,并在架构不可避免地演变过程中保持韧性。

这就是路线图。等我们完成时,你将拥有构建一个可靠、可扩展的代理系统所需的工具和模式——一个不仅在理论上听起来不错,而且能够在生产环境的实际压力下真正经受住考验的系统。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Agentic AI Agent Planning, Reflection, and Self-Correction Agentic artificial intelligence (AI) agents possess the capability to plan actions towards achieving goals while reflecting on past performance and correcting mistakes. These abilities are fundamental components that enable agentic systems to operate autonomously with a high degree of efficiency. #### Planning Capabilities Planning involves setting objectives and determining sequences of actions required to achieve these goals. Advanced planning algorithms allow agentic AI agents to consider multiple scenarios simultaneously by evaluating potential outcomes before committing resources or executing tasks[^1]. This process often includes: - **Goal Setting**: Defining clear targets based on internal states or external inputs. - **Action Sequencing**: Determining optimal orderings of operations necessary for goal attainment. - **Resource Management**: Allocating available assets efficiently across planned activities. ```python def generate_plan(agent_state, environment_model): """ Generates an action sequence from current state to reach desired objective Parameters: agent_state (dict): Current condition of the agent including location, inventory etc. environment_model (object): Model representing world dynamics Returns: list: Ordered set of actions leading toward target achievement """ # Define goal here... goal = define_goal(environment_model) possible_actions = get_possible_actions(agent_state, environment_model) best_sequence = find_best_action_sequence(possible_actions, goal) return best_sequence ``` #### Reflective Mechanisms Reflection enables agentic entities to analyze previous experiences critically. Through this analysis, insights can be gained regarding what worked well versus areas needing improvement. Techniques such as reinforcement learning facilitate continuous adaptation through trial-and-error processes where rewards/penalties guide future decision-making strategies[^2]. #### Self-Correction Protocols Self-correction refers to mechanisms allowing intelligent agents to identify errors during execution phases promptly. Once detected, corrective measures are initiated automatically without human intervention. Common approaches include anomaly detection models trained specifically for recognizing deviations from expected behavior patterns within specific contexts[^3]. --related questions-- 1. How do modern AI frameworks support dynamic replanning when initial plans fail? 2. What role does machine learning play in enhancing reflective practices among autonomous agents? 3. Can you provide examples demonstrating effective implementations of self-correcting features in real-world applications?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值