AI Agents入门教程之五种智能体工作流设计模式

01.引言

AI智能体不仅仅是花哨的聊天机器人——它们更像是能自主"思考"和行动的智能助手,能够协调多个步骤或工具来完成目标。在实际应用中,智能体通常结合大语言模型(LLM)的推理能力与外部工具(数据库、API等)来处理复杂任务。

Anthropic将这类架构统称为智能体系统,其核心区别在于:工作流沿预定义代码路径运行,而真正的智能体允许LLM动态决定后续动作。随着越来越多产品依赖LLM进行多步推理,运用经典设计模式来组织这些步骤变得至关重要。正如软件设计模式那样,这些AI工作流模式提供了将复杂任务分解为可管理模块的蓝图,使系统更易于构建、调试和扩展。

以下是确保智能体工作流畅运行的五大核心模式,每种模式都代表编排LLM调用与工具使用的典型方法。下文将逐一深入解析这些模式。

img

02.Prompt Chaining

提示链(Prompt Chaining)正如其名:将一系列提示串联起来,前一个LLM调用的输出成为下一个提示的输入。换句话说,你需要把任务分解成一个固定的、循序渐进的流程。

img

例如,要撰写一份报告,第一个提示可能负责生成大纲,第二个填充细节,最后一个优化语言表达。

关键在于,每个步骤都有明确分工,使得每次LLM查询更简单、更精准。正如某指南所述:“提示链将任务分解为一系列步骤,每个LLM调用都处理前一个步骤的输出。”

这种模式就像流水线烹饪食谱:每个工位(或厨师)都会对产品进行加工,然后传递给下一步。虽然速度较慢(需要更多轮LLM调用),但能显著提升质量。

当任务具有明确的顺序(例如,“提纲→草稿→编辑”)或者你希望通过逐步处理以在速度和准确性之间进行权衡时,可以使用提示链模式。在实际应用中,许多LLM框架都支持轻松实现提示链:只需循环执行每个步骤,用前一个步骤的答案作为下一步的输入,最终生成输出。

适用场景:具有明确、有序步骤的任务(例如,多部分问答、结构化分析)。

03.Routing‍

路由模式(Routing)的核心在于智能分配:通过LLM(或简单分类器)分析输入内容,将其分类并引导至专属子任务或智能体处理,而非使用单一通用提示。

例如,客户邮件可能根据内容被路由至「退款处理」智能体或「技术支持」智能体,使每个智能体专注于特定领域,从而提升专业度。

img

正如Anthropic所述:“路由机制对输入进行分类,并将其定向到专门的后续任务”,这种关注点分离的设计能避免单一提示试图处理所有问题。

可将路由想象成一位友善的前台或客服总机:“您需要什么帮助?”——随后将您转接至对应部门。

若缺乏路由机制,开发者可能将所有规则塞进单一提示,试图一次性处理所有可能的输入,结果往往导致混乱或"样样通、样样松"的效果。而路由模式能让每个分支流程得到针对性优化。

**适用场景:**当你面对不同类别的请求,需要采取非常不同的处理方式(例如,文本摘要、翻译、分类等)。

04.Parallelization

并行化(Parallelization)使智能体能同时执行多项任务并合并结果,主要体现为两种形式:

  • 分块处理(Sectioning):将任务拆分为可并行执行的独立子任务。例如同时分析产品的不同功能特性。
  • 投票表决(Voting):多次运行相同提示(可调整参数或使用不同模型)获得多样答案后汇总(如采用多数决或集成学习)。

正如LangChain开发者所述:“LLM有时能同步处理任务,并通过编程方式聚合输出结果”。

img

换言之,同时发起多个LLM调用后,通过规则或另一个模型整合输出。这种方式能显著提升速度鲁棒性:并行执行节省时间(无需等待长链条任务依次完成),而投票机制可增强可靠性(若五个模型中有三个达成共识,答案大概率正确)。

例如,假设你需要写一个关于同一主题的创意故事、一首搞笑诗和一份事实摘要。你可以同时启动三个LLM实例——一个写故事,一个写诗,一个写摘要——然后将它们的输出拼接成一个完整的响应。

适用场景:适合需要处理大型或时间敏感任务、或者希望从多个角度获得不同观点的情况。

05.Orchestrator–Worker

指挥者-工作者模式(Orchestrator–Worker)的核心在于动态任务委派:

  • 中央指挥者(由LLM驱动)接收输入后实时分解任务
  • 工作者智能体(多个LLM实例)并行处理细分任务
  • 指挥者最终整合各模块输出形成完整解决方案

正如Anthropic所定义:“中央LLM动态分解任务、分配给工作者LLM执行,并合成最终结果”。这种模式特别适用于无法预判完整工作流的场景。

img

例如,在一个编码智能体中,指挥者可能会分析一份bug报告,并决定需要修改三个不同的文件——直到阅读输入之前,它都不知道这些子任务。然后,它将每个文件的任务发送给不同的代码编写LLM,等待它们的修补方案,最后合并或审核它们。

一个日常的比喻是厨房里的主厨:他们根据订单(任务)动态分配冷盘/热厨/甜点工位(子任务),然后品尝或组合所有的菜肴。或者可以想象成项目经理,指派任务给团队成员,并收集进展情况。关键在于适应性——每个新输入都可能产生不同的子任务组合。

适用场景:适合处理那些子任务依赖具体问题的复杂任务,例如多文件代码任务、综合报告等。

06.Evaluator–Optimizer

评估器-优化器(有时称为generator–critic 循环)将两个智能体配对工作:一个负责生成响应,另一个负责评估并提出改进建议。

本质上这是一个反馈循环:生成器大语言模型写出答案,评估器大语言模型进行评分或批评(指出问题或打分),随后生成器根据反馈修改输出。该循环可重复进行,直至答案达到质量标准。

img

这个过程类似于学生写作文、教师批改、学生根据评语重写的流程。正如某描述所言:“一个大语言模型调用生成响应,另一个则在循环中持续提供评估和反馈”。

例如:首先生成初始代码方案,随后交由自动化"审查器"检查代码风格或正确性;若评估器发现问题,会指导智能体如何修正,智能体则进行新一轮尝试。

该模式能显著提升可靠性和精细度,特别适用于存在明确质量标准的场景(语法正确性、事实准确性、测试通过率)。每一轮批评都推动输出更接近目标。

适用场景:需要迭代优化的任务,例如创意写作或有精确要求的代码生成。

07.为什么需要学习这些模式?

理解这些模式绝非纸上谈兵——它对构建可靠、可维护的AI系统至关重要。

产品团队通过选择正确模式(或组合运用),能让复杂的智能体工作流既清晰又健壮。

模块化模式意味着大家可以单独测试优化某个环节,而不会影响整体系统。这些模式还能帮助控制延迟和成本:大家可以自主决定何时并行处理或拆分任务,何时采用顺序链式执行。值得庆幸的是,现代框架正在不断涌现以应对这种复杂性。

例如,开发者常用LangChain(及其LangGraph扩展)、CrewAI等平台快速搭建智能体应用原型。微软开源的AutoGen库则专门针对多智能体工作流设计。这些工具提供了任务链、路由选择、流程编排等基础模块,让你能专注于业务逻辑而非底层实现。

总之,智能体工作流正处在AI产品设计的前沿。产品经理和工程师若能识别并应用这五大模式,就能设计出不仅更智能、而且具备扩展性和迭代便利性的系统。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值