Attention依旧神一般存在!“交叉注意力+特征融合”轻松拿捏B会,新作准确率近100%

今天在顶会上看到了一篇效果出奇好的论文,作者通过把交叉注意力机制与特征融合结合,在脑电图情感识别任务中,实现了近100%的准确率!

实际上,交叉注意力机制+特征融合,是当下非常新颖且热门的涨点思路。相比传统的特征融合方法,其不仅能提高模型准确率和计算效率,还能使模型更好地适应跨模态的数据融合,增强泛化性和鲁棒性!

主要在于,交叉注意力机制能够处理不同模态的数据,并在不同模态之间建立联系。这便为进一步的特征融合操作,提供了更为丰富的特征表示。同时交叉注意力的动态分配权重特点,也使得模型更加关注任务相关信息,摒除冗余,进而减少计算负担。

为让大家能够快速get到该思路的诀窍,实现高效涨点,我给大家准备了8篇很有参考性的顶会论文以及源码,一起来看!

Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition

内容:文章介绍了一种基于相互交叉注意力机制(Mutual-Cross-Attention, MCA)的特征融合方法,用于基于脑电图(EEG)的情感识别。该方法结合了定制的3D卷积神经网络(3D-CNN),通过数学机制巧妙地发现了EEG数据中时域和频域特征之间的互补关系。研究者还提出了一种新的3D特征表示方法,即Channel-PSD-DE,以提高性能。该方法在DEAP数据集上达到了99.49%(愉悦度)和99.30%(唤醒度)的准确率。

在这里插入图片描述

CAFF-DINO: Multi-spectral object detection transformers with cross-attention features fusion

内容:提出了一种结合交叉注意力特征融合的变换器(Transformer)模型。这种模型旨在通过利用不同光谱数据源的信息,提高目标检测的准确性和鲁棒性。该方法通过交叉注意力机制来融合来自不同传感器或不同光谱范围的特征,从而增强模型对目标的识别能力,尤其是在复杂或多变的环境条件下。简而言之,这篇论文介绍了一种先进的目标检测框架,它通过融合多光谱数据中的特征来提升检测性能。

在这里插入图片描述

DynStatF: An Efficient Feature Fusion Strategy for LiDAR 3D Object Detection

内容:文章一种高效的特征融合策略,用于激光雷达(LiDAR)的三维物体检测。这种方法通过结合动态和静态特征,旨在提高检测算法的性能,尤其是在处理动态环境中的物体时。DynStatF 策略通过分析和融合来自激光雷达传感器的时序数据和空间数据,增强了模型对物体的识别能力,从而在复杂场景中实现更准确的三维物体检测。简而言之,DynStatF 通过智能地融合动态和静态信息,优化了激光雷达数据的物体检测过程。

ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispectral Object Detection

内容:论文介绍了一种用于多光谱目标检测的特征融合框架,名为ICAFusion,它通过迭代交叉注意力引导的特征融合方法来增强多光谱图像中对象特征的区分度。该框架利用双交叉注意力变换器来模拟全局特征交互,并捕获不同模态间的互补信息。此外,论文还提出了一种迭代学习策略,以共享参数的方式在模块间进行特征的迭代细化,从而在不增加可学习参数的情况下提高模型性能。该方法通用且有效,可以集成到不同的检测框架中,并与不同的骨干网络一起使用。在KAIST、FLIR和VEDAI数据集上的实验结果显示,该方法在提高检测性能的同时,还能实现更快的推理速度。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 交叉注意力机制概述 交叉注意力机制是一种创新方法,旨在通过同时利用模态内关系和模态间关系来增强不同数据形式之间的关联性[^1]。这种机制特别适用于多模态任务,在这些场景下,模型需要处理来自不同类型的数据源的信息。 ### 方法描述 具体而言,当应用于图像和文本这两种不同的表示方式时,该技术可以显著提高两者间的匹配效果。对于给定的一组输入——比如一张图片及其对应的描述语句——算法会分别提取各自的特征向量作为基础表征;之后再借助于精心设计的查询(Query)、键(Key)以及值(Value),构建起跨越两个域的关注度分布图谱,从而使得每一侧都能够感知到对方的重要组成部分并据此调整自身的表达模式。 ### 实现细节 以下是基于PyTorch框架的一个简化版实现案例: ```python import torch.nn as nn import torch class CrossAttention(nn.Module): def __init__(self, dim_model): super(CrossAttention, self).__init__() self.scale = dim_model ** -0.5 # 定义线性变换层用于生成Q,K,V矩阵 self.q_linear = nn.Linear(dim_model, dim_model) self.k_linear = nn.Linear(dim_model, dim_model) self.v_linear = nn.Linear(dim_model, dim_model) self.softmax = nn.Softmax(dim=-1) def forward(self, query, key, value): Q = self.q_linear(query) K = self.k_linear(key) V = self.v_linear(value) attention_scores = torch.matmul(Q, K.transpose(-2,-1)) * self.scale attention_probs = self.softmax(attention_scores) context_layer = torch.matmul(attention_probs, V) return context_layer ``` 上述代码片段定义了一个简单的`CrossAttention`类,它接收三个参数:query、key 和 value,这三个张量通常代表了两种不同类型的特征映射(例如视觉特征与文字特征)。通过计算它们之间相互作用产生的权重矩阵,并以此加权求和得到最终上下文表示,实现了跨模态信息的有效传递与整合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值