引言:痴呆症是全球重要的健康挑战,特别是由于不同病因之间症状的重叠,准确诊断非常困难。随着全球老龄化人口的增长,痴呆症诊断的准确性需求变得越来越迫切,这对医疗系统造成了压力。尽管阿尔茨海默病(AD)通常是痴呆研究的主要焦点,但其他形式如血管性痴呆(VD)、路易体痴呆(LBD)和额颞叶痴呆(FTD)也很常见,并且往往与AD共存。误诊可能导致不适当的治疗,从而影响患者的预后。此外,神经科医生和神经心理学家数量的减少使得对可扩展诊断工具的需求更加迫切。波士顿大学医学院Vijaya Kolachalama等通过开发一种能够利用多模态数据区分多种痴呆病因的人工智能(AI)模型,来应对这些挑战。
主要发现:
1. 模型开发与数据来源: 该AI模型使用了来自9个独立的地理多样化数据集中的51,269名参与者的数据。这些数据包括人口统计信息、病史、药物使用情况、神经心理学评估、功能评估和多模态神经影像数据。
2. 模型表现:模型在分类认知正常、轻度认知障碍(MCI)和痴呆患者方面表现出极高的准确性。在分类认知状态时,模型的微平均受试者工作特征曲线下面积(AUROC)为0.94,区分不同痴呆病因时为0.96。值得注意的是,该模型在混合性痴呆病例的诊断中也表现出色,处理共存病理时的平均AUROC为0.78。
3. 提升临床医生表现:该AI辅助的诊断工具在与神经科医生联合使用时显著提高了诊断准确性。在随机选择的100个病例中,AI辅助评估的AUROC比仅凭临床医生判断提高了26.25%。模型的预测与生物标志物证据及尸检数据相一致,进一步证实了其在识别痴呆亚型(包括AD、VD和LBD)方面的可靠性。
4. 处理不完整数据:即使在数据不完整的情况下,该模型也展现出稳健的表现。在不同程度数据缺失的情况下,模型保持了可靠的表现,证明其在临床环境中适用,即便可用数据不完备。
5. 生物标志物相关性:模型的预测结果与现有的生物标志物,如阿尔茨海默病的淀粉样蛋白和tau蛋白、额颞叶痴呆的FDG-PET影像、路易体痴呆的多巴胺转运体扫描,具有良好的对应性。这进一步验证了模型在区分基于病理生理特征的痴呆类型时的有效性。
结论:
该AI模型在痴呆诊断领域具有重要的进展。通过整合多模态数据,它提高了诊断准确性并增强了临床医生的表现,尤其是在区分不同痴呆病因和处理混合性痴呆病例方面。模型与生物标志物的对齐进一步强调了其在临床实践中的潜在应用。该框架有望用于痴呆筛查、早期诊断和治疗计划中。
影响:
本研究的AI框架有潜力彻底改变痴呆诊断,特别是在痴呆病例不断增加和专业人员短缺的医疗系统中。该模型也可以应用于临床试验中,以提高参与者筛查和结果预测的准确性。然而,通过前瞻性研究和试验进一步验证该模型的效果是必要的,以充分实现其在提高患者护理方面的潜力。此外,该模型处理不完整数据的能力使其在数据可用性不一致的实际临床环境中成为一个多功能工具。未来工作应探讨其在更广泛人群中的应用,并优化工具以更好地解决痴呆分期的细微差别问题。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。