前言
在多模态大模型中,视觉连接器大致可以分为压缩型和非圧缩型,其中BLIP2提出的Q-Former [1] 是压缩型视觉连接器的代表工作之一。
- 关键字:Q-Former、视觉连接器、视觉语义压缩、视觉语义摘要
多模态大模型MLLM通常由三部分组成:
-
视觉编码器,可以是CLIP、SigLIP、DINO等,采用的结构可以是ViT,也可以是传统的CNN,不过现在主流都是ViT结构,本文指的视觉编码器也是ViT的产出。
-
视觉连接器(Projector),通常是简单的MLP结构,或者Q-Former、Resampler、D-abstractor等复杂结构。
-
底座LLM,如LLama、Qwen、baichuan等。
对于被切分为个块的图片输入,其ViT视觉表征输出为,视觉连接器将视觉表征输出映射到文本表征空间,记为,如果采用的是非压缩型的连接器,此处的,如果采用的是压缩型连接器,那么。底座LLM将文本输入和进行计算,输出隐层状态记为,输出的结果为序列。
不难看出,视觉连接器作为视觉编码器和底座LLM的连接部分,起着重要的视觉语义压缩和视觉语义抽取的作用。通常来说,视觉连接器从是否进行压缩的角度,可以分为2种:
-
非压缩型连接器:如LLaVA [3] 中采用的线性连接,只是将视觉表征空间的维度映射到文本表征空间。
-
压缩型连接器:典型的如BLIP2中的Q-Former结构,其不仅将视觉表征空间的维度映射到文本表征空间,同时进行了视觉语义令牌数量的压缩。
作者将视觉连接器中的信息压缩和语义转换阶段解耦,分别称之为压缩(compression)和摘要(abstraction),前者指的是减少视觉令牌数量,后者则指的是对视觉语义概念的抽取(如属性、实体等)。
在转入作者分析阶段之前,我们直接给出作者在本文的结论:
-
观察1:底座LLM本身可以从原始视觉特征中进行有效的语义提取。
-
观察2:压缩型的连接器从视觉块中提取的视觉语义信息会存在折损。
-
结论:Q-Former这种同时进行压缩和摘要的连接器,由于本身已经进行了有损的压缩和摘要,而底座LLM又会进行进一步的摘要,会导致信息损失。
我们主要看下作者是怎么分析的,作者采用了一种称之为GAE(Generic Attention Explainability)[5] 的可视化工具(在文中作者将其扩展成了R-GAE,以适配生成式的LLM模型),用来可视化文本与视觉的关联,可以简单认为激活区域越亮的部分,和文本标签的关联越大。如Fig 1. 所示,作者通过R-GAE工具去跟踪文本标签与视觉块之间的关联,为了能够分析出映射后的视觉令牌(projected visual tokens)的作用,作者将其拆解为了Text -> Patch = Text -> Query * Query -> Patch
两个过程,如公式(1)所示,这种拆解让我们可以分别观察和这两部分的特点。
Fig 1. 将Text-Patch部分拆解为Query-Patch和Text-Query两个部分。
如图Fig 2.所示,我们能看到对于同一个文本描述"remote with purple and red buttons"(带着紫色和红色按钮的遥控器),在不同视觉连接器(线性、Q-Former)下的R-GAE可视化结果。我们分别分析下:
-
对于线性的连接器,其不具有压缩的作用,因此视觉令牌数量维持在了576个。从Text-Patch的可视化结果来看,模型主要关注在了紫色的按钮上,通过拆解,可以发现这个语义提取主要是Text-Query贡献的,再看到Query-Patch部分没有明显的高亮部分,意味着从原始图像块(Patch)到视觉令牌(Query)的过程中不存在语义的提取,进而也暗示着底座LLM本身具有从图片块中直接进行视觉语义提取的能力(也就是abstraction能力)。
-
对于Q-Former,其具有压缩(compression)的作用,视觉令牌的数量从576压缩到了64个。从Text-Patch的可视化结果来看,模型的关注点是错误的(也即是没有关注到紫色和红色的按钮上),从拆解的结果来看,我们观察到几个现象:
-
Text-Query部分具有明显的语义提取过程,在很多图片部分都存在语义高亮。
-
Query-Patch部分中,Query具有64个视觉令牌,Query-Patch部分放大的结果来看,存在很多不同Query关注在了同一个语义区域的情况,这导致了信息的冗余和浪费。注意到Q-Former是进行了信息压缩的,如果压缩后还具有比较高的信息冗余,意味着会损失一些有效信息。
在Text-Query和Query-Patch部分同时都进行了视觉语义提取(Abstraction)的现象,作者称之为双重摘要(Double-Abstraction phenomenon)。这种现象来自于Q-Former这东西同时考虑了信息压缩和信息摘要,从线性连接器的分析来看,底座LLM是可以对原始的图片特征进行语义提取的,因此作者认为一个“合格”的视觉连接器,只需要进行信息的有效压缩就足够了。
Fig 2. 观察不同视觉连接器下的R-GAE情况。
基于以上的分析和启发,作者使用了最简单的自适应平均池化作为视觉连接器,如Fig 3.所示,显然这种连接器具有信息压缩的能力(会压缩视觉令牌的数量),而且平均池化对比Q-Former,不具有语义提取的能力,从而避免了作者提到的双重摘要的问题。此时,平均池化只作为信息压缩器,而底座LLM则负责提取语义。其R-GAE的可视化结果如Fig 2.所示,从中能发现query-patch部分,query提供了更加丰富多样的视觉信息,而text-query则能正确提取语义。
Fig 3. 采用简单的自适应平均池化作为视觉连接器,只是进行信息压缩,而不尝试进行视觉语义信息提取。
作者设计了一些实验,验证采用平均池化作为视觉压缩器的效果,如Fig 4所示,其中的Linear是没进行压缩的实验(#V=576 tokens),而#V=144的则是进行了压缩的,能发现对比主流的压缩器(Q-Former、C-Abstractor和D-Abstractor),DeCo在多个基准集合上存在效果的优势。作者也进行了进一步的实验,通过组合不同的视觉编码器、底座LLM和输入图像分辨率,如Fig 5.所示,作者发现对比C-Abstractor,平均池化(AvgPool)在多个基准测试中具有一致的优势。
Fig 4. 对比Linear(无压缩)和其他压缩器的效果,DeCo有一定的优势。
Fig 5. C-Abstractor和平均池化,在不同视觉编码器和底座LLM、输入图像分辨率组合下的效果对比,能发现采用平均池化具有一致的优势趋势。
作者还进行了一个试验,逐步提高压缩视觉token的数量,也即是减少视觉信息的压缩率,如Fig 6.所示,我们会发现几点:
-
随着压缩率的减少,输入的视觉token数量会提高,无论采用的何种视觉连接器,效果总是提高的。
-
当压缩能力减少到没有的情况下,输入的视觉token数量等于原始视觉编码器提供的视觉token数量,此时采用不同的连接器效果是相当接近的。
-
在高压缩的情况下,如576->144, 平均池化连接器具有较大的优势。
-
笔者觉得有点奇怪的是,在576->256这个地方,C-Abstractor存在一个明显的性能下降,这一点有点说不过去?
Fig 6. 随着视觉token数量的增加(也即是视觉连接器的压缩能力减少),其效果总是提高的,而采用不同的连接器的效果最终都会趋于相同的点。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。