导读
本文深入探讨了深度学习领域中几类重要模型的变体研究与未来演进方向,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体(LSTM、GRU)、Transformer(BERT、GPT、Vision Transformer)、扩散模型、生成对抗网络(GAN)以及深度强化学习模型。
通过分析各模型的核心架构、现有变体的改进策略,揭示它们在不同应用场景中的优势与局限,并基于当前研究趋势预测未来发展方向,旨在为相关领域研究者与从业者提供全面的技术洞察与前瞻性思考,不仅有助于挖掘模型的最大潜力,还将为新的应用场景开辟道路。
一、卷积神经网络(CNN)
1.1 核心架构与原理
CNN的架构围绕卷积层、池化层和全连接层构建。卷积层通过卷积核在输入数据上滑动进行卷积操作,提取局部特征,其参数共享机制极大减少了模型参数量,提升计算效率。池化层对特征图进行下采样,降低数据维度,保留主要特征,增强模型对输入变化的鲁棒性。全连接层将池化后的特征映射到最终输出,完成分类或回归任务。在图像识别中,卷积核可学习到诸如边缘、纹理等基础图像特征,通过多层卷积与池化,逐步构建起对复杂物体的识别能力。
1.2 现有变体研究
以下是卷积神经网络(CNN)系列模型目前的变体研究情况和未来的演进方向:
- 轻量化模型:MobileNet和EfficientNet等模型通过引入深度可分离卷积和复合缩放方法,在减少模型参数量和计算量的同时,保持了较高的性能,适用于移动设备和嵌入式系统。
- 与Transformer的融合:研究人员将Transformer的自注意力机制与CNN结合,如Vision Transformer(ViT)和Swin Transformer等,这些混合模型在图像分类和目标检测任务中展现了强大的性能。
- 多尺度特征融合:一些变体注重多尺度特征的融合,以提高模型在复杂场景下的识别能力,例如通过在不同层级的特征图之间进行信息交互和整合。
- 动态网络结构:部分研究探索动态网络结构,如根据输入数据的特点自适应地调整网络的连接方式或参数,以提高模型的灵活性和效率。
1.3 未来演进方向
- 更高效的架构设计:研究人员将继续探索更高效的CNN架构,以进一步减少计算量和模型大小,同时保持高性能。例如,通过网络结构搜索和优化算法,自动设计出更适合特定任务的网络结构。
- 与Transformer的深度融合:未来可能会看到更多将CNN与Transformer深度融合的模型出现,充分发挥CNN在局部特征提取和Transformer在全局信息建模方面的优势,解决复杂视觉任务。
- 可解释性增强:随着CNN在医疗、金融等关键领域的应用增加,提高模型的可解释性变得至关重要。未来的研究将关注如何通过更先进的可视化技术、因果推理方法等,使CNN的决策过程更加透明。
- 持续学习与动态适应:现实世界中的数据分布可能会随时间变化,未来的CNN需要具备持续学习和动态适应的能力,能够实时更新模型以适应新的数据分布,无需重新训练整个模型。
- 多模态融合:结合图像、文本、语音等多种模态数据的多模态CNN模型将得到更多研究和应用,实现更复杂的人工智能任务,如视觉问答和图像描述生成。
二、循环神经网络(RNN)及其变体
2.1 RNN核心架构与原理
RNN专为处理序列数据设计,其隐藏层状态在时间步间传递,赋予网络记忆先前信息能力,解决传统神经网络无法处理时序依赖问题。每个时间步,RNN接收输入并结合前一时刻隐藏状态计算当前输出与新隐藏状态,公式为,其中为时刻隐藏状态,为输入,、为权重矩阵,为偏置,为激活函数。在自然语言处理中,可按词序处理句子,理解文本上下文关系。
2.2 LSTM与GRU的改进机制
为了解决传统RNN的梯度消失和梯度爆炸问题,研究者们提出了长短期记忆网络(LSTM)和门控循环单元(GRU)这两种改进的RNN变体。
LSTM
LSTM通过引入门控机制来控制信息的流动,从而有效地保存长期依赖信息。LSTM的核心是细胞状态(cell state),它类似于一条信息传输的“高速公路”,能够将信息从网络的一端传递到另一端。LSTM通过三个门——遗忘门、输入门和输出门——来控制信息的更新和流动。
- 遗忘门:遗忘门的作用是决定从细胞状态中丢弃哪些信息。它通过一个sigmoid层来决定每个时间步需要遗忘的信息量。例如,在处理文本数据时,遗忘门可以丢弃与当前任务无关的历史信息。
- 输入门:输入门的作用是决定哪些新信息需要写入细胞状态。它由两部分组成:一个sigmoid层决定哪些值需要更新,一个tanh层生成一个新的候选值向量,然后将这两部分相乘并写入细胞状态。
- 输出门:输出门的作用是决定下一个隐藏状态的值。它通过一个sigmoid层决定细胞状态中的哪些部分将被输出,然后将细胞状态通过一个tanh层处理后与sigmoid层的输出相乘,得到最终的隐藏状态。
LSTM的这种门控机制使得它能够有效地解决梯度消失问题,从而更好地捕捉长距离依赖关系。例如,在机器翻译任务中,LSTM能够更好地处理长句子之间的语义关联,从而提高翻译的准确率。
GRU
GRU是对LSTM的进一步改进,旨在简化模型结构并减少计算复杂度。GRU通过合并更新门和重置门为一个单一的更新门,减少了参数数量,从而提高了训练效率。GRU的核心思想是通过更新门和重置门来控制信息的更新和流动。
- 更新门:更新门的作用是决定在当前时间步中,细胞状态需要保留多少过去的信息,并更新多少新的信息。它通过一个sigmoid层来决定每个时间步需要更新的信息量。
- 重置门:重置门的作用是决定在当前时间步中,细胞状态需要遗忘多少过去的信息。它通过一个sigmoid层来决定每个时间步需要遗忘的信息量。
GRU在结构上更为简单,但仍然能够在很多任务上与LSTM相近的性能。例如,在处理短文本数据时,GRU的训练速度更快,且能够有效地捕捉短文本中的语义信息。此外,GRU在处理语音识别任务时也表现出色,能够更好地捕捉语音信号中的时间依赖性。
2.3 变体研究
以下是循环神经网络(RNN)及其变体(LSTM、GRU)目前变体的研究:
- 轻量化模型:研究人员提出了MobileRNN等轻量化RNN模型,通过优化网络结构和参数,使其更适合在移动设备和资源受限的环境中运行。
- 深度GRU:在GRU的基础上进一步加深网络层次,通过引入更多的门控单元和复杂的连接方式,以提高模型对复杂序列数据的学习能力。
- 多模态融合:将RNN与CNN、Transformer等其他类型的神经网络结合,形成多模态模型,以处理包含图像、文本、语音等多种模态的复杂数据。
- 自适应学习率调节:在训练过程中,根据模型的性能动态调整学习率,以提高训练效率和模型的收敛速度。
2.4 未来演进方向
- 提高模型效率和可扩展性:通过改进算法和优化计算资源的使用,降低RNN及其变体的计算复杂度,使其能够更高效地处理更长的序列数据。
- 探索新的门控机制:研究新的门控结构,以进一步增强模型对长期依赖关系的捕捉能力,解决现有门控机制在某些任务中的局限性。
- 与其他技术的结合:将RNN与Transformer、注意力机制等其他深度学习技术深度融合,发挥各自的优势,解决复杂的人工智能任务。
- 增强模型的可解释性:开发新的技术和方法,如可视化工具、基于注意力机制的解释等,帮助理解RNN模型的内部运作原理,提高其在关键领域的可解释性。
三、Transformer
3.1 Transformer基本原理与架构
Transformer架构是一种基于自注意力机制的神经网络架构,于2017年由Vaswani等人首次提出,主要用于处理序列数据,如自然语言处理和计算机视觉中的序列建模任务。其核心思想是通过自注意力机制(Self-Attention)来捕捉序列中各个位置之间的依赖关系,而无需像循环神经网络(RNN)那样逐个时间步进行计算,从而大大提高了模型的并行化能力和训练效率。
Transformer架构主要由编码器(Encoder)和解码器(Decoder)组成。编码器将输入序列编码为上下文表示,解码器则根据编码器的输出逐步生成输出序列。编码器和解码器都由多个相同的层(Layer)堆叠而成,每层都包含两个主要模块:多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。此外,Transformer还引入了位置编码(Positional Encoding)来保留序列中的位置信息,因为自注意力机制本身不考虑序列的位置顺序。
多头自注意力机制是Transformer的核心创新之一。它将输入序列分成多个不同的“头”,每个头独立地计算自注意力,然后将这些头的输出进行拼接和线性变换,从而能够捕捉到不同子空间中的特征。这种机制使得模型能够同时关注序列中的多个位置,有效地捕捉长距离依赖关系。前馈神经网络则对每个位置的特征进行非线性变换,进一步提取特征。
Transformer架构的出现标志着深度学习领域的一个重大突破。与传统的RNN及其变体相比,Transformer在处理长序列数据时具有显著优势,能够更高效地捕捉长距离依赖关系,并且训练速度更快。此外,Transformer的并行化能力使其能够充分利用现代计算资源,如GPU和TPU,进一步提高了模型的训练和推理效率。
3.2 BERT、GPT、ViT等变体原理与创新
BERT
BERT(Bidirectional Encoder Representations from Transformers)是由Google在2018年提出的一种基于Transformer架构的预训练语言模型。BERT的核心创新在于其双向训练策略,即在训练过程中同时考虑上下文信息。BERT采用了掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两种预训练任务。
掩码语言模型通过随机掩盖输入序列中的一些单词,然后让模型预测这些被掩盖的单词,从而学习到单词之间的上下文关系。下一句预测任务则让模型判断两个句子是否是连续的文本,进一步增强了模型对文本连贯性的理解。BERT的双向训练策略使其能够更全面地捕捉文本中的上下文信息,从而在自然语言处理任务中取得了显著的效果。
GPT
GPT(Generative Pre-trained Transformer)是由OpenAI提出的一系列生成式预训练语言模型。与BERT的双向训练策略不同,GPT采用单向的自回归语言模型进行预训练。GPT的核心思想是通过预测下一个单词来学习文本的生成模式,从而生成连贯且自然的语言文本。
GPT-1于2018年首次发布,采用了Transformer架构进行预训练,并在多种自然语言处理任务中取得了较好的效果。随后,GPT-2和GPT-3不断增大模型规模和训练数据量,进一步提升了模型的性能和生成能力。GPT-3拥有1750亿个参数,能够生成高质量的文本,如新闻报道、故事创作、代码生成等,展示了强大的语言生成能力。
GPT系列模型在自然语言处理领域具有广泛的应用前景。它们不仅可以用于文本生成任务,还可以通过微调或零样本学习(Zero-shot Learning)的方式应用于多种下游任务,如问答系统、文本分类、机器翻译等。GPT系列模型的成功也表明了大规模预训练语言模型在自然语言处理领域的巨大潜力。
ViT
ViT(Vision Transformer)是由Google Research于2020年提出的一种将Transformer架构应用于计算机视觉领域的模型。ViT的核心思想是将图像分割成多个小块(Patch),然后将这些小块作为序列输入到Transformer架构中进行处理。ViT通过自注意力机制捕捉图像块之间的长距离依赖关系,从而实现了对图像的有效建模。
ViT的出现为计算机视觉领域带来了新的研究方向。与传统的卷积神经网络(CNN)相比,ViT在处理图像分类任务时表现出色,尤其是在大规模数据集上。ViT的自注意力机制能够更灵活地捕捉图像中的特征,而不需要像CNN那样依赖于局部感受野和卷积操作。此外,ViT还可以与其他模型进行结合,如与CNN或RNN等,进一步提升模型的性能。
ViT的成功也引发了后续一系列基于Transformer架构的计算机视觉模型的研究和发展。例如,DeiT(Data-efficient Image Transformers)通过改进预训练策略,提高了ViT在小规模数据集上的性能;Swin Transformer通过引入层次化的结构和窗口注意力机制,进一步提升了模型在图像分割和目标检测等任务中的表现。
3.3 变体研究
以下是Transformer(BERT、GPT、Vision Transformer)系列模型目前变体的研究:
-
BERT变体:
-
- RoBERTa:通过在更大规模的数据集上进行预训练,并对训练过程进行优化,提高了模型的性能。
- DistilBERT:利用知识蒸馏技术,将BERT模型压缩为更小的版本,显著提高了推理速度,同时保持了接近BERT的性能。
- ELECTRA:采用生成式预训练和判别式微调相结合的方式,在预训练阶段让模型学习更准确的表示。
- TinyBERT:在DistilBERT的基础上进一步压缩模型,通过多任务知识蒸馏等方法,使模型更轻量化。
- SpanBERT:专注于跨度预测任务的预训练,通过掩码连续的文本跨度,提高了模型在涉及文本跨度预测任务上的性能。
-
GPT变体:
-
- GPT-2:在GPT-1的基础上扩大了模型规模,提升了文本生成的连贯性,并引入了零样本学习的概念。
- GPT-3:拥有1750亿参数的超大规模模型,在自然语言理解、文本生成和代码生成等任务上表现出色。
- GPT-4:进一步提升了推理能力和多模态处理能力,能够更好地处理复杂的任务场景,如多步骤推理和长文本生成。
-
Vision Transformer变体:
-
- Swin Transformer:通过引入局部窗口自注意力机制和层次化结构,解决了计算复杂度和性能之间的权衡问题,同时能够捕捉图像的局部和全局信息。
- ViT-GPT:结合了Vision Transformer和GPT的思想,引入生成式预训练任务,提高了模型的泛化能力和生成能力。
3.4 未来演进方向
-
提高模型效率与计算资源优化:
-
- 架构改进:通过改进Transformer的架构,如采用线性注意力机制、稀疏注意力机制等,降低计算复杂度,提高模型的训练和推理效率。
- 模型压缩:利用量化、剪枝、知识蒸馏等技术,将大型模型精简为轻量级版本,使其更适合在移动设备和资源受限的环境中运行。
-
多模态融合:
-
- 多模态模型开发:构建能够同时处理图像、视频、文本、语音等多种模态数据的模型,实现更丰富的交互和内容创作。
- 融合技术研究:开发更高效的多模态特征融合方法,解决多模态数据的偏差和对齐难题,让不同模态数据更好地相互补充和增强。
-
增强模型的可解释性:
-
- 可视化技术:通过可视化模型的注意力机制、特征表示等,帮助人们更好地理解模型的决策过程。
- 因果分析:采用因果推理等方法,探究模型预测结果与输入数据之间的因果关系,提高模型的可解释性。
-
探索新的基础理论和模型架构:
-
- 全新架构研究:探索如RetNet、Mamba等新兴架构,这些架构在计算复杂度、内存使用、推理速度等方面展现出了潜在的优势,有可能在未来成为主流架构。
- 架构融合:将Transformer与其他类型的神经网络(如RNN、CNN)或模型(如状态空间模型)进行融合,发挥各自的优势,解决复杂的人工智能任务。
-
小样本学习与持续学习:
-
- 小样本学习:通过元学习和迁移学习等技术,提高模型在有限数据条件下的性能,使模型能够在少量样本上快速适应新任务。
- 持续学习:让模型具备持续学习的能力,能够随着新数据的不断到来而更新知识,避免灾难性遗忘,更好地适应动态变化的现实世界。
四、扩散模型
4.1 核心架构与原理
扩散模型基于正向扩散和反向扩散过程。正向扩散逐步向数据中添加高斯噪声,直至数据变为纯噪声;反向扩散通过学习噪声分布,从噪声中逐步恢复原始数据。在图像生成中,正向过程将清晰图像逐渐变为噪声图像,反向过程利用神经网络预测噪声,去除噪声恢复清晰图像。其生成过程基于概率模型,生成样本质量高、多样性丰富。
4.2 现有变体研究
以下是扩散模型(Diffusion Models)系列模型目前变体的研究:
- Denoising Diffusion Probabilistic Models (DDPM):作为基础的扩散模型,通过逐步向数据中添加噪声,然后学习如何去除噪声来生成新的数据样本。
- Latent Diffusion Models (LDM):将扩散过程压缩到潜在空间中,通过编码器将输入数据映射到低维的潜在空间进行扩散和去噪,最后通过解码器还原到原始数据空间,极大提高了计算效率。
- Diffusion Probabilistic Models with Denoising Diffusion Implicit Models (DDIM):通过引入隐式模型,允许在较少的采样步骤内生成高质量样本,提高了采样效率。
- Score-based Diffusion Models:基于得分匹配的方法,通过估计数据分布的梯度(得分)来指导生成过程,与传统的扩散模型在理论和实践上有所不同。
- Conditional Diffusion Models:在扩散和去噪过程中引入条件信息,如类别标签、文本描述等,使得模型能够根据特定条件生成符合要求的数据。
4.3 未来演进方向
-
提高模型效率:
-
- 采样加速:研究人员会不断探索更高效的采样算法和技术,例如改进ODE/SDE解算器、采取模型蒸馏策略、使用免训练采样技术等。
- 降低显存需求:通过优化模型结构和算法,降低模型对显存的占用,使其能够在更广泛的硬件设备上运行。
-
生成质量和多样性提高:
-
- 改进模型结构:不断创新和改进扩散模型的网络结构,使其能够更好地学习数据的特征和模式,从而生成更高质量、更逼真、细节更丰富且具有多样性的样本。
- 结合多模态信息:进一步融合多模态信息,如文本、图像、音频等,实现跨模态的生成和转换。
-
应用领域拓展:
-
- 与强化学习结合:与强化学习相结合,以优化生成过程中的决策和策略,提高生成的效率和质量。
- 多模态生成与统一模型:将文本扩散模型与图像、音频扩散模型结合,形成统一的多模态生成模型,实现真正的AI内容创作助手。
- 低资源高效训练:利用已有的大型预训练语言模型来提升扩散模型的起点,探索小模型的大作用,发展高效的增量训练和自适应学习方法。
-
理论研究深入:
-
- 更深入理解扩散过程:对扩散模型的理论基础进行更深入的研究,包括扩散过程的数学原理、模型的收敛性、稳定性等方面的理论分析。
- 探索新的扩散机制和原理:研究人员可能会探索新的扩散机制和原理,突破现有的框架,提出更创新的模型和方法。
-
可解释性和可控性增强:
-
- 提高模型的可解释性:发展方法来解释扩散模型生成结果的原理和依据,使人们能够更好地理解模型是如何做出决策和生成内容的。
- 增强生成过程的可控性:开发更有效的控制手段,让用户能够更精确地控制生成过程,例如指定生成内容的某些特定属性、特征或约束条件。
五、生成对抗网络(GAN)
5.1 核心架构与原理
GAN由生成器和判别器组成。生成器学习从随机噪声中生成数据,判别器区分生成数据与真实数据。两者通过对抗训练不断优化,生成器努力生成更逼真数据欺骗判别器,判别器提升辨别能力,最终达到纳什均衡,使生成器生成的数据接近真实数据分布。在图像生成中,生成器生成图像,判别器判断图像真假,通过反复对抗训练提升生成图像质量。
5.2 现有变体研究
以下是生成对抗网络(GAN)系列模型目前变体的研究:
- 自适应对抗损失:近年来提出的自适应对抗损失通过动态调整判别器的学习目标,使得生成器更具鲁棒性。例如,StyleGAN3 引入了动态噪声和权值平滑技术,有效改善了模式崩塌现象。
- 条件生成式对抗网络(Conditional GAN, cGAN):通过在生成器和判别器中引入额外的条件变量,使得生成器可以根据特定条件生成数据。例如,BigGAN通过条件标签生成高分辨率图像,广泛应用于图像分类和自然图像生成。
- 生成对抗变分推断:将GAN与变分自编码器(VAE)相结合的新架构在生成过程中引入了概率建模,有效提升了生成样本的质量和多样性。
- 改进的训练方法:为了解决GAN训练过程中可能出现的不稳定和模式崩塌问题,研究人员提出了多种改进的训练方法,如Wasserstein GAN(WGAN)及其改进版WGAN-GP,通过优化损失函数和梯度惩罚项,提高了模型的稳定性和生成质量。
5.3 未来演进方向
-
提高生成质量和效率:
-
- 更高质量的生成:未来的研究将继续关注如何提高GAN的生成能力,以生成更逼真的数据,包括更高分辨率的图像、更自然的视频和更复杂的三维模型。
- 更高效的训练:通过改进算法和利用更强大的硬件,GAN的训练时间将大幅缩短,同时减少计算资源的消耗。
-
增强模型的稳定性和可解释性:
-
- 模型稳定性:提高GAN模型在训练过程中的稳定性,减少摇摆现象和模式崩塌问题,确保生成数据的质量稳定。
- 模型解释性:发展方法来解释GAN生成结果的原理和依据,使人们能够更好地理解模型的决策过程和生成机制。
-
拓展应用领域:
-
- 多模态数据处理:将GAN应用于更广泛的领域,如自然语言处理、音频生成、多模态数据融合等,实现更丰富的交互和内容创作。
- 个性化内容创造:利用GAN为用户定制个性化的娱乐内容,例如个性化视频、游戏角色或音乐。
- 数据增强和分析:生成高质量的合成数据,以支持数据分析和机器学习模型的训练。
-
与其他技术的结合:
-
- 与强化学习结合:将GAN与强化学习相结合,以优化生成过程中的决策和策略,提高生成的效率和质量。
- 与Transformer结合:探索GAN与Transformer等其他深度学习技术的融合,发挥各自的优势,解决复杂的人工智能任务。
六、深度强化学习模型
6.1 核心架构与原理
深度强化学习结合深度学习和强化学习,通过智能体与环境交互学习最优策略。智能体根据当前状态选择行动,环境反馈奖励和新状态,智能体目标是最大化长期累积奖励。深度学习模型用于逼近价值函数或策略函数,如深度Q网络(DQN)使用神经网络估计Q值,根据Q值选择行动;策略梯度方法直接学习策略函数,通过优化策略参数使期望奖励最大化。在游戏领域,智能体通过不断尝试学习游戏最优玩法。
6.2 现有变体研究
6.2.1 DQN变体
- Double DQN:解决DQN高估Q值问题,通过将动作选择和Q值估计分离,使用两个网络分别进行动作选择和Q值计算,减少高估偏差,提升算法稳定性和性能。
- Dueling DQN:将Q网络分为优势网络和价值网络,分别学习状态价值和动作优势,能更高效学习状态价值,在复杂环境中表现更好,提高学习效率和决策质量。
6.2.2 基于策略梯度的变体
- A2C(Advantage Actor - Critic):结合策略梯度和价值函数估计,演员网络学习策略,评论家网络估计价值函数,利用优势函数指导策略更新,比传统策略梯度算法收敛更快,提高学习效率。
- **A
6.2.2 基于策略梯度的变体
- A3C(Asynchronous Advantage Actor - Critic):A3C在A2C基础上引入异步更新机制,多个智能体并行与环境交互,各自独立计算梯度并异步更新全局网络参数。这种方式不仅利用了并行计算的优势加速训练过程,还增加了探索的多样性,有效克服了传统强化学习算法训练时间长、易陷入局部最优的问题,在Atari游戏等多种任务中取得显著成效 。
- PPO(Proximal Policy Optimization):PPO通过引入近端策略优化算法,限制策略更新的幅度,避免策略更新过快导致性能下降。它采用了一种截断的重要性采样方法,在保证策略改进的同时,维持策略的稳定性。PPO在训练效率和样本利用率方面表现出色,在机器人控制、自动驾驶等实际应用场景中得到广泛应用 。
6.3 未来演进方向
-
提高模型的泛化能力和适应性:
-
- 元进化策略:通过进化学习算法本身或整个学习算法的参数,使深度强化学习模型能够快速适应不同任务和环境,提高模型的通用性。
- 自适应和自我改进机制:开发具有自适应和自我改进能力的算法,使模型能够根据环境变化自主调整策略和参数,增强模型的灵活性和鲁棒性。
-
增强模型的可解释性和可信度:
-
- 可解释性增强:通过引入符号推理、与基于规则的方法结合以及采用可解释的元学习技术等,使深度强化学习模型的决策过程更加透明和可理解。
-
拓展应用领域和与其他技术的结合:
-
- 与大型语言模型结合:将深度强化学习与大型语言模型(如GPT-4)结合,开发能够理解、生成和响应人类语言的模型,提升语言模型的情境理解和伦理推理能力。
- 多模态应用:探索深度强化学习在多模态数据处理中的应用,如结合视觉、语言等多模态信息,实现更复杂的人工智能任务。
-
提高训练效率和模型性能:
-
- 模型结构优化:不断优化深度强化学习模型的网络结构,如采用更高效的神经网络架构、参数共享机制等,提高模型的学习能力和计算效率。
- 训练算法改进:研究更高效的训练算法,如改进的Q-learning算法、策略梯度方法等,加快模型的收敛速度,提高训练的稳定性。
七、结论
卷积神经网络(CNN)、循环神经网络(RNN)及其变体(LSTM、GRU)、Transformer(BERT、GPT、Vision Transformer)、扩散模型、生成对抗网络(GAN)以及深度强化学习模型作为深度学习的核心模型家族,各自在不同的应用领域展现出了强大的能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。