URCMO算法

J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, and L. Wang, Utilizing the relationship between unconstrained and constrained Pareto fronts for constrained multi-objective optimization, IEEE Transactions on Cybernetics, 2022.

摘要

URCMO利用UPF和CPF的之间的关系来解决CMOPs。URCMO试图探讨和利用约束Pareto前沿(CPF)和无约束Pareto前沿(UPF)之间的关系来求解cmp。特别是对于给定的CMOP,演化过程分为学习阶段和演化阶段。学习阶段的目的是测量CPF和UPF之间的关系。为此,首先创建两个种群,并通过特定的学习策略使它们分别接近CPF和UPF。然后,利用两个种群的可行性信息和优势度关系来确定它们之间的关系。基于学习到的关系,在进化阶段设计具体的进化策略,提高目标信息的利用效率,从而更好地解决该CMOP。通过上述过程,提出了一种新的约束多目标进化算法(CMOEA)。

1.URCMO概述

URCMO算法实现过程如下所示。

  首先,在搜索空间中随机生成两个初始种群,每个种群有NP个个体。特别是第一个种群P1是主要的寻找CPF的种群,第二个种群P2是寻找UPF的辅助种群。然后,将整个进化过程分为学习阶段、进化阶段。在学习阶段,使用一定数量的计算资源进化两个种群,如算法2所示。在学习阶段结束时,测量UPF和CPF之间的关系,如算法3所示。根据这种关系,两个种群在进化阶段通过特定的策略不断更新,如算法4所示。

2.学习阶段更新策略

  为了判断这种关系,两个种群应该首先分别进化到接近CPF和UPF的位置。因此,使用一定数量的计算资源将两个种群进化为各自的目标种群。算法2给出了学习阶段的更新过程。在每一代中,每一个种群(Pi, i ={1,2})将使用遗传算法(GA)和差分进化(DE)来产生后代。

每个种群的1/2用两种GA算子(1.模拟二进制交叉(SBX)和2.多项式变异(PM)生成NP/2后代),剩余的随机选择部分用DE算子,随后将P1、GA算法产生的后代O1(GA)、DE算法产生的后代O1(DE),第二个种群所产生的的后代O2(GA)、O2(DE)组合起来形成TP1,同理形成TP2,随后从TPi中选择NP个个体作为新的new_Pi.

3.分类方法

URCMO将UPF和CPF的关系分为如下4类:

(a)第一类:UPF与CPF相同。(b)第二类:UPF包含整个CPF。(c)第三类:UPF包含部分CPF。(d)第四类:UPF不包含CPF的任何部分。

如图1所示,可以看出UPF上的所有解对于第一类问题都是可行的,对于第四类问题都是不可行的。还有一种情况是UPF包含了二类和三类问题的可行和不可行的解决方案。因此,首先用可行比来区分这三种情况。

CDP由大佬Deb提出,因其简单易行而最常用。CDP使用以下标准比较配对个体A和B。

1)当个体A和B都是可行解时,如果A Pareto优于B,则选择A进入下一代。

2)当A为可行解,B为不可行解时,选择A。

3)当A和B都是不可行解时,选择约束违反程度最小的个体。

(优点:CDP的操作相对简单,它更倾向于可行的解
缺点:当问题为具有离散可行区域或不可行的障碍时,会导致种群陷入一些局部可行区域。为了弥补CDP的这一缺陷,最近提出了采用了生态位技术来增加种群的多样性。)

在P1上使用CDP算法以获得由P11表示的第一级中的解。对P2进行快速非支配排序,获取第一级解P21.

  如果P21是可行解,则CMOP可以是I型问题(第1行和第2行)。如果所有P21都是不可行解,则CMOP可以被视为IV型问题(第3行和第4行)。如果P21包含可行解和不可行解,则CMOP可以被视为II型或III型问题。

分析:因为P21所趋近的是UPF,通过比较UPF和CPF来判断为哪种类型,通过这个可以判断出第一和第四类型。

   接下来,需要进一步分析II型和III型问题。从图1(B)中可以看出,当UPF和CPF的所有解都只考虑目标时,CPF上的所有解都是非劣解,因为UPF包含了整个CPF。相反,图1(c)表明CPF包含非支配解和支配解。基于这一差异,我们仅根据目标函数计算P21和P11之间的优势关系。具体地,P11和P21被合并为临时组合CP。然后,对CP执行快速非支配排序以获得P11的每个个体的水平,然后,如果P11中的大多数个体属于第一水平,则CMOP被视为II型问题(第10行和第11行)。如果P11中很少有个体属于第一水平,则CMOP可能是IV型问题(第12和13行)。否则,CMOP被视为III型问题(第14和15行)。这里,使用新的参数α。

为什么在分类方法中使用新的参数α?实际上,α是一个阈值,用于减少学习阶段由于收敛性差而导致的分类错误。

图3给出了一个第二类问题的误分类实例。红线和蓝线分别是CPF和UPF。红色圆圈和蓝色方块分别表示P11和P12。由于仅使用少量的计算资源来更新两个群体,因此P11和P12的大小可能很小,并且它们不会位于它们的目标PF上。在这种情况下,可能会发生错误。在图3的黑色方块中,蓝色方块占红色圆圈的主导地位。经过快速非支配排序后,红色圆圈属于第二层,并非所有P11都属于第一层。如果不引入α,则该CMOP将被归类为III型问题。 

  对于类型I和类型II问题,我们根据最优可行区域的大小对其进行进一步分类,原因将在备注3中解释。最优可行域是指包含CPF的可行域。在这里,我们计算一个新的指标:贡献率(COR)。通过计算两种学习策略P2对P1的贡献率,推导出最优可行域的大小。具体而言,设succt DE为ODE 2中在第t代成功进入新P1的个体数,succt GA为OGA 2中在第t代成功进入新P1的个体数。接下来,第19行和第20行中的等式分别计算DE(CORDE)和GA(CORGA)的贡献率。如果CORGA > CORDE,则可以推断收敛策略对第一种群的贡献更大。在这种情况下,该CMOP可以具有更大尺寸的最优可行区域。否则,该CMOP可以具有较小尺寸的最优可行区域,因为较高的分集有利于找到小的可行区域。最后,有六种不同的类型:1)I型,2)I '型,3)II型; 4)II '型; 5)III型;和6)IV型。

4.进化阶段更新过程

  在进化阶段,由于良好的搜索能力,P1也以与学习阶段相同的方式更新。因此,演化阶段的主要工作是根据问题类型为P2分配合适的策略。特别地,这六种类型的问题被分为三组,对应于三组策略(S1-S3)。同时,S1-S3是这些类型问题的最终标签。算法4给出了进化阶段的更新过程

第一组(S1):第一组包含 I 类和 II 类问题。使用的策略(S1)是GA和DE/transfer/1。每种策略都有相同的选择概率。请注意,GA 是指 SBX 和 PM 的组合。 DE/transfer/1是一个转移算子,用于组合两个群体的信息。

DE/transfer/1的公式如下:

 xP2,r 和 xP1,r 分别为 P2 和 P1 中的一个随机个体。其中vP2,r是xP2,r的突变向量,uP2,r是生成的后代个体,rand是0到1之间的随机数,CR是交叉率,d = (1, 2,...,D ) 是随机整数,drand 是 1 到 D 之间均匀生成的随机整数。

  GA和DE/transfer/1具有较强的开发能力,因此它们适合解决最优可行区域较大(I型和II型)的问题,而不是较小最优可行区域(I'型和II'型)的问题。

第二组(S2):第二组包括I’类、II’类和IV类问题。设计策略(S2)为DE/current-to-opbest/1:

其中 F 是尺度因子,xopbest 是 P1 的前 100p% 个体中的随机个体(p ∈ (0, 1]),r1、r2 和 r3 是 1 到 NP 范围内的不同整数。(保证多样性)在 DE/current 中-to-opbest/1,不进行交叉算子,从P1中选择学习样本,可以提供更好的多样性和一些新的搜索方向。对于I'类和II'类问题,由于最优可行区域较小,需要更高的多样性。同时,学习阶段的搜索方向无法找到这些小的可行区域,因此需要一些新的搜索方向。与S1中的策略相比,DE/current-toopbest/1会更适合解决I'类和II'类问题。

  另外,对于IV类问题,由于UPF不包含CPF的任何部分,因此不再需要搜索UPF。因此,通过学习 xopbest 个体,DE/currentto-opbest/1 旨在为 P1 生成一些可行的解决方案。同时,由于UPF和CPF的位置不同,相应的帕累托最优解在决策空间中也彼此远离。在这种情况下,P2 也需要高多样性来找到可行的区域。

3)第三组(S3):该组仅包括III类问题。使用的策略(S3)包括 GA、DE/transfer/1 和 DE/current-to-opbest/1。每种策略都有相同的选择概率。事实上,第三类问题可以看作是第一类问题和第四类问题的结合。基于此考虑,我们同时采用这三种策略,以便不仅传递重叠部分的信息,而且为非重叠部分提供一些新的搜索方向。

备注3:为什么I类和II类问题需要根据最优可行区域的大小进一步分类?事实上,进一步的分类是由设计的进化策略决定的。 S1中的策略具有很强的开发能力,导致多样性较低。而且,DE/transfer/1重复利用了两个群体的信息,并没有产生新的基因。因此,当使用S1时,P2很难找到一些小的可行区域。相反,由于DE/current-to-opbest/1提供了更高的多样性和一些新的搜索方向,因此它更适合具有较小最优可行区域的I类和II类问题。因此,需要区分I’型和II’型。此外,没有必要识别“III”类和“IV”类问题。原因是 DE/current-to-opbest/1 已用于 III 类和 IV 类问题,其中找到小的最优可行区域。此外,DE/transfer/1和DE/current-to-opbest/1策略与进化转移优化[32]中提出的策略相关,其目的是在解决其他辅助任务的帮助下解决一项主要任务。在解决辅助任务的过程中,有用的知识可以通过任务间交叉策略[33]、[34]被主任务利用,以提高算法的搜索能力。在本文中,上述两种策略旨在混合两个群体的信息,使得第二个群体可以为第一个群体提供更多有用的知识。

相关的代码及实验可在platemo上找到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

森屿~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值