YOLOV8损失函数改进:SlideLoss创新升级,结合IOU动态调整困难样本的困难程度,提升小目标、遮挡物性能

105 篇文章 ¥129.90 ¥299.90
86 篇文章 ¥199.90 ¥299.90
本文介绍了SlideLoss_IOU,一种动态调整困难样本难度的损失函数,尤其针对YOLOV8的小目标和遮挡物检测性能提升。通过魔改YOLOV8的损失函数,实现在多个数据集上的性能增长。详细步骤和源码在作者专栏分享,助读者掌握网络魔改技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文改进:SlideLoss_IOU,困难样本的困难程度(如小目标遮挡物)动态调整,创新度十足

SlideLoss_IOU |   亲测在多个数据集能够实现涨点,对小目标、遮挡物性能提升也能够助力涨点。

🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

### Slideloss 损失函数介绍 Slideloss 是一种用于目标检测中的分类损失函数,旨在解决传统交叉熵损失在处理类别不平衡问题上的不足。具体来说,在目标检测任务中,背景类别的样本数量远多于前景类别,这可能导致模型偏向预测背景而忽略小体或低置信度体。 为了缓解这一现象,Slideloss 设计了一种滑动窗口机制来动态调整正负样本之间的权重分布[^1]。通过引入可变阈值参数 \( \tau \),该算法能够根据不同情况灵活改变决策边界的位置,从而使得网络更加关注困难样例的学习过程。 #### 数学表达式 设 \( p_i \) 表示第 i 类的概率估计值,则 Slideloss 的定义可以表示为: \[ L_{slide}(p, y)=\left\{\begin{array}{ll} -\log (p_y+\epsilon)+w(y)\sum\nolimits_{i=0}^{C}\max (\min(p_i,\alpha)-\beta, 0)^2 & ,y>0 \\ -w_0\log ((1-p_0)+\epsilon)+(1-w_0)(1-y)\log((1-p_0)+\epsilon)&, otherwise \end{array}\right.\] 其中, - \( w(y) \) 和 \( w_0 \) 分别代表不同类别的加权系数; - \( C \) 是总的类别数目; - \( \alpha \) 控制惩罚项的最大影响范围; - \( \beta \) 则决定了最小激活水平下的响应强度; 上述公式表明当真实标签属于某个特定对象时(即\( y > 0 \)),除了常规的对数似然部分外还会加上一个额外的平方误差项用来增强对错误分类实例的关注程度;而对于背景类别而言则采用不同的策略以防止过度拟合。 ```python def slide_loss(preds, targets, alpha=0.75, beta=0.01): """ 计算slideloss 参数: preds: 预测概率向量 targets: 真实标签 alpha: 平方误差最大影响因子 beta: 最小激活水平 返回: loss_value: slideloss数值 """ pos_mask = targets > 0 neg_mask = ~pos_mask # 对于正样本计算loss pos_loss = -(torch.log(preds[pos_mask]+1e-9)) + \ torch.sum(torch.clamp_min(preds[neg_mask]-alpha, max=0)**2) # 负样本单独处理 neg_loss = -torch.mean(targets[neg_mask]*torch.log(1-preds[neg_mask]+1e-9)) return pos_loss + neg_loss ``` ### 应用场景分析 由于其独特的设计思路,Slideloss 特别适用于存在显著类别不均衡的任务环境,尤其是在面对大量背景干扰的情况下仍需保持较高召回率的小目标检测领域表现出色。此外,它还可以与其他类型的改进措施相结合共同提升整体性能表现,例如与 Focal Loss 结合使用可以在一定程度上进一步优化难易样本间的平衡关系[^2]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值