YOLO11-seg分割:多头检测器提升分割精度

  💡💡💡本文内容:引入多头检测器助力YOLO11,添加一个微小物体的检测头暴力提升小目标检测性能

 - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)

修改为: 

- [[19, 22, 25 ,28], 1, Segment, [nc, 32, 256]] # Detect(P2, P3, P4, P5)

 💡💡💡多头检测器 Mask mAP50 从原始的0.673 提升至0.683

  《YOLOv11魔术师专栏》将从以下各个方向进行创新:

YOLO11魔术师

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

pose关键点检测】【yolo11-seg分割】

定期向订阅者提供源码工程,配合博客使用。

订阅者可以申请发票,便于报销 

💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!

💡💡💡适用场景:红外、小目标检测、工业缺陷检测、医学影像、遥感目标检测、低对比度场景

💡💡💡适用任务:所有改进点适用【检测】、【分割】、【pose】、【分类】等

💡💡💡全网独家首发创新,【自研多个自研模块】,【多创新点组合适合paper 】!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐专栏涨价趋势 159 ->199->259->299,越早订阅越划算⭐⭐⭐

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8、Yolov9等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

 1.YOLO11介绍

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。

​​

​​

Segmentation 官方在COCO数据集上做了更多测试: 

2.数据集介绍

道路裂纹分割数据集是一个全面的4029张静态图像集合,专门为交通和公共安全研究而设计。它非常适合自动驾驶汽车模型开发和基础设施维护等任务。该数据集包括训练、测试和验证集,有助于精确的裂缝检测和分割。 

训练集3712张,验证集200张,测试集112张

 标签可视化:

3.如何训练YOLO11-seg模型

3.1 修改 crack-seg.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── crack-seg  ← downloads here (91.2 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/ultralytics-seg/data/crack-seg # dataset root dir
train: train/images # train images (relative to 'path') 3717 images
val: valid/images # val images (relative to 'path') 112 images
test: test/images # test images (relative to 'path') 200 images

# Classes
names:
  0: crack

3.2 如何开启训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/11/yolo11-seg.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/crack-seg.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )


3.3  训练结果可视化


YOLO11-seg summary (fused): 265 layers, 2,834,763 parameters, 0 gradients, 10.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:07<00:00,  1.06s/it]
                   all        200        249       0.83      0.784      0.816      0.632      0.746      0.707      0.673      0.228

Mask mAP50 为 0.673 

MaskPR_curve.png

BoxPR_curve.png 

3.4  多头检测器

      在进行目标检测时,小目标会出现漏检或检测效果不佳等问题。YOLO11有3个检测头,能够多尺度对目标进行检测,但对微小目标检测可能存在检测能力不佳的现象,因此添加一个微小物体的检测头,能够大量涨点,map提升明显;

源码链接:YOLO11涨点优化:小目标检测 | 多头检测器提升小目标检测精度_yolo11对小目标检测大的改进-CSDN博客

YOLO11-seg-smallob summary (fused): 321 layers, 3,162,444 parameters, 0 gradients, 26.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:08<00:00,  1.18s/it]
                   all        200        249      0.813      0.751       0.81      0.639       0.68      0.735      0.683      0.228

 
Mask mAP50 从原始的0.673 提升至0.683

MaskPR_curve.png

### YOLOv11分割数据集资源与信息 对于YOLOv11模型而言,其训练过程依赖于高质量的数据集来实现有效的目标检测和语义分割功能。为了确保模型能够学习到丰富的特征表示并具备良好的泛化能力,准备阶段需收集大量带有标注的目标图像集合[^2]。 #### 数据集构建原则 - **多样性**:所选图片应覆盖广泛的应用场景以及不同光照条件下的实例; - **平衡性**:正样本(即包含待识别物体)与负样本数量应当保持相对均衡; #### 特定领域应用——安全装备检测 考虑到SFCHD数据集中包含了大规模复杂真实的劳保服及头盔样本,在这方面有着突出表现。该数据集不仅规模庞大而且涵盖了多种环境因素影响下的人体防护用品形态变化情况,非常适合用来测试改进后的YOLO架构针对此类特定对象的性能提升效果[^1]。 然而需要注意的是,截至当前公开资料中尚未有关于名为“YOLOv11”的具体版本描述或官方发布记录存在。通常情况下,“YOLO”系列算法会随着研究进展不断迭代更新,但具体的命名方式可能会有所差异。因此建议查阅最新的学术论文和技术文档获取最准确的信息。 ```python import torch from yolovX import YOLOvX # 假设这是最新版YOLO框架 model = YOLOvX(pretrained=True) # 加载自定义数据集进行微调 dataset_path = "path/to/sfchd_dataset" train_loader, val_loader = prepare_data_loaders(dataset_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值