考虑分时电价需求响应的综合能源系统两阶段日前日内滚动优化调度策略研究(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

考虑分时电价需求响应的综合能源系统两阶段日前日内滚动优化调度策略研究

一、分时电价与需求响应的作用机制

二、综合能源系统(IES)的组成与优化目标

三、两阶段优化调度策略的建模与协同机制

1. 日前调度阶段

2. 日内滚动调度阶段

四、数学建模方法

1. 两阶段模型框架

2. 分时电价耦合机制

五、典型案例分析

六、挑战与展望

结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据、文档下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

考虑分时电价需求响应的综合能源系统两阶段日前日内滚动优化调度策略研究

一、分时电价与需求响应的作用机制

分时电价(TOU)是一种基于电能时间价值的定价机制,通过峰谷电价、季节性电价等差异化定价引导用户调整用电行为,实现削峰填谷。其核心作用包括:

  1. 经济性引导:高峰时段高电价抑制用电需求,低谷时段低电价激励用电转移,降低电网运行成本。
  2. 促进新能源消纳:例如美国加州根据光伏发电曲线制定分时电价,光伏高峰期按低谷电价收费,日落后按高峰电价收费,平衡可再生能源波动。
  3. 需求响应(DR)基础:作为价格型需求响应的核心手段,分时电价通过长期稳定的价格信号改变用户用电习惯(如调整生产计划或采用储能设备)。

需求响应与分时电价的协同机制:

  • 价格型DR:包括分时电价、实时电价(RTP)、尖峰电价(CPP),用户主动调整用电模式以降低成本。
  • 激励型DR:通过合约或补贴直接激励用户参与负荷调整,常与分时电价结合使用。
二、综合能源系统(IES)的组成与优化目标

IES由多能源供应、转换、存储及负荷组成:

  • 能源供应:光伏、风电、电网、天然气网等。
  • 转换设备:热电联产(CHP)、电转气(P2G)、燃气锅炉等。
  • 储能单元:电池、储热罐、水蓄冷等。
  • 多元负荷:电、热、冷负荷的耦合需求。

优化目标

  1. 经济性:最小化运行成本(能源采购、设备维护、碳排放成本等)。
  2. 能效最大化:提升多能转换效率,减少能源浪费。
  3. 低碳化:最小化碳排放,促进可再生能源消纳。
  4. 可靠性:保障供需平衡与设备安全运行。
三、两阶段优化调度策略的建模与协同机制
1. 日前调度阶段
  • 功能:基于24小时负荷与新能源出力预测,制定小时级调度计划,确定设备出力、储能充放电策略及分时电价时段划分。
  • 模型特点
    • 目标函数:总成本最小化(如公式:min⁡∑(C购电+C燃料+C维护)min∑(C购电​+C燃料​+C维护​))。
    • 约束条件:设备运行限制、供需平衡、分时电价时段划分(基于净负荷曲线聚类)。
    • 不确定性处理:采用鲁棒优化或随机规划应对预测误差。
2. 日内滚动调度阶段
  • 功能:基于超短期预测(15分钟~1小时分辨率),滚动修正日前计划,平抑实时波动。
  • 模型特点
    • 滚动窗口:控制时域(如1小时)与执行周期(如5分钟)分离,每次仅下发首个时段的调整指令。
    • 目标函数:修正成本最小化(如公式:min⁡∑(C偏差惩罚+C调整)min∑(C偏差惩罚​+C调整​))。
    • 协同机制:通过模型预测控制(MPC)跟踪日前计划,动态调整储能与可调机组出力。

协同示例

  • 在电-氢耦合系统中,日前阶段安排电解槽制氢计划,日内阶段根据风电出力偏差调整储氢罐释放策略,降低外购电成本。
四、数学建模方法
1. 两阶段模型框架

其中,ΔP为预测偏差,λ为惩罚系数。

2. 分时电价耦合机制
  • 时段划分:基于净负荷曲线聚类(如K-means算法)确定峰、平、谷时段。
  • 用户响应建模:采用价格弹性矩阵描述负荷随电价的变化,如:

    其中,E(t,t′)为弹性系数,Δp(t′)为电价变化量。
五、典型案例分析
  1. 电动汽车有序充电

    • 策略:基于分时电价引导EV在低谷时段充电,结合NSGA-II算法优化充电负荷曲线。
    • 效果:降低峰谷差20%,用户成本减少15%。
  2. 风光火储虚拟电厂

    • 两阶段优化:日前分解风光出力波动,日内通过分时电价调整用户侧负荷,系统经济性提升20%。
  3. 电-热微网

    • 鲁棒调度:日前阶段优化CHP计划,日内阶段调整储热罐出力,可再生能源消纳率提高12%。
六、挑战与展望
  1. 挑战

    • 不确定性管理:新能源与负荷预测误差的累积影响。
    • 用户行为建模:价格弹性系数难以精确量化。
    • 多时间尺度协同:电、热、气动态响应速度差异。
  2. 未来方向

    • 动态分时电价:结合实时电价(RTP)增强灵活性。
    • 人工智能应用:基于深度学习的超短期预测与调度决策。
    • 市场机制融合:引入虚拟电厂(VPP)参与电力市场竞价。
结论

分时电价与需求响应的结合为综合能源系统优化提供了经济信号与灵活性资源,而两阶段日前-日内滚动调度策略通过分层优化与实时修正,有效平衡了长期经济性与短期稳定性。未来需进一步探索动态电价设计、多主体博弈机制及跨能源协同优化,以支撑高比例可再生能源系统的可靠运行。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李天格,胡志坚,陈志,等.计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J].电力自动化设备, 2023, 43(1):9.

[2]陈湘元,吴公平,龙卓,等.考虑源荷不确定性及用户侧需求响应的综合能源系统多时间尺度优化调度[J].电力科学与技术学报, 2024, 39(3):217-227.

[3]尹硕、张鹏、杨萌、白宏坤、杨钦臣.计及需求侧响应的综合能源系统多时间尺度优化调度[J].电力系统及其自动化学报, 2020, 32(11):8.

[4]李天格,胡志坚,陈 志,et al.计及电-气-热-氢需求响应的综合能源系统 多时间尺度低碳运行优化策略[J].Electric Power Automation Equipment / Dianli Zidonghua Shebei, 2023, 43(1).

🌈Matlab代码、数据、文档下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值