YOLOv9/YOLOv8算法改进【NO.116】 使用ASF-YOLO中的Attentional Scale Sequence Fusion对ICCV2023 DySample进行二次创新

  前   言
       YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:

首推,是将两种最新推出算法的模块进行融合形成最为一种新型自己提出的模块然后引入到YOLO算法中,可以起个新的名字,这种改进是最好发高水平期刊论文。后续改进将主要教大家这种方法,有需要的朋友可私信我了解。

第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,也可以说是一种新的算法,所以做实验的话建议朋友们优先尝试这种改法。

第二,创新特征融合网络,这个同理第一,比如将原yolo算法PANet结构改进为Bifpn等。

第三,改进主干特征提取网络,就是类似加个注意力机制等。根据个人实验情况来说,这种改进有时候很难有较大的检测效果的提升,乱加反而降低了特征提取能力导致mAP下降,需要有技巧的添加。

第四,改进特征融合网络,理由、方法等同上。

第五,改进检测头,更换检测头这种也算个大的改进点。

第六,改进损失函数,nms、框等,要是有提升检测效果的话,算是一个小的改进点,也可以凑字数。

第七,对图像输入做改进,改进数据增强方法等。

第八,剪枝以及蒸馏等,这种用于特定的任务,比如轻量化检测等,但是这种会带来精度的下降。

...........未完待续

一、创新改进思路或解决的问题

这两个模块都是cvpr2023最新提出的模块,将这两个模块进行相结合形成新的改进模块,可以作为论文的创新点进行使用。

二、基本原理 

原文:[2312.06458] ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation (arxiv.org)

摘要:我们提出了一种新颖的基于 "只看一眼"(YOLO)的注意力尺度序列融合框架(ASF-YOLO),该框架结合了空间和尺度特征,可实现准确、快速的细胞实例分割。在 YOLO 分割框架的基础上,我们采用尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并采用三重特征编码器(TPE)模块来融合不同尺度的特征图,以增加详细信息。我们进一步引入了通道和位置关注机制(CPAM),将 SSFF 和 TPE 模块整合在一起,重点关注信息通道和与空间位置相关的小目标,以提高检测和分割性能。在两个小区数据集上进行的实验验证表明,所提出的 ASF-YOLO 模型具有出色的分割精度和速度。

代码:GitHub - tiny-smart/dysample: (ICCV'23) Learning to Upsample by Learning to Sample

三、​添加方法

部分代码如下所示,具体可关注后私信我获取。yolov8n为baseline。

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv8,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!
### YOLOv8 DySample 问题及解决方案 #### 动态上采样算子概述 YOLOv8引入了DySample超轻量动态上采样算子,该技术实现了低延迟和高性能的上采样操作[^1]。这种新的上采样方法显著提升了模型效率,在保持高精度的同时减少了计算资源消耗。 #### 常见问题分析与解决办法 ##### 输入尺寸不匹配错误 当尝试加载预训练权重文件时可能会遇到输入特征图大小不符合预期的情况。这通常是因为网络结构中的某些层配置不当所致。对于这种情况可以调整`yaml`配置文件中关于检测层(`Detect`)的相关参数设置来解决问题[^2]: ```python # 修改detect层定义部分如下所示 [[15, 18, 21], 1, Detect, [nc]] ``` ##### 上采样过程中内存溢出 如果在运行含有大量通道数的大规模图像处理任务时发生OOM(out of memory),则可能是由于GPU显存不足引起。此时建议优化代码逻辑减少不必要的中间变量存储;或者降低batch size以适应硬件条件限制。 ##### 性能瓶颈排查 为了定位性能瓶颈所在之处并加以改善,可以通过TensorBoard等工具监控各个阶段耗时情况找出最耗费时间的部分进行针对性调优。另外也可以通过简化网络架构移除冗余组件达到加速目的。 #### 实践案例分享 针对具体应用场景下的实际需求,开发者们可以根据自身业务特点灵活运用这些改进措施。例如,在目标检测领域内,适当增加锚框数量有助于提高小物体识别率;而在语义分割方面,则可通过增强上下文信息交互机制进一步提升边界细节表现力[^3]. ```python from ultralytics import YOLO if __name__ == '__main__': # 创建新模型实例 model = YOLO('path_to_custom_yaml_file') # 开始训练过程... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值