介绍怎么去计算显微物镜的分辨率或者说是分辨能力,在现有的显微物镜的标识中,都会标明这一项参数,这项参数对于显微物镜的设计和选取来说都至关重要;
目录
1、George Biddell Airy与‘艾里斑’(1835)
3、John William Strutt与‘瑞利判据’(1896)
一、标识
光学显微镜的分辨率定义为标本上两点之间的最短距离,观察者或相机系统仍可将其区分为单独的实体。
所以有用之间的距离d去表示,也有用R去表示,以及δ标识,都是显微物镜的分辨率标识;
二、显微物镜的分辨率的计算
具有三个计算公式
分辨率(r)=λ/(2NA)
分辨率(r)=0.61λ/ NA
分辨率(r)=1.22λ/(NA(obj)+ NA(cond))
其中r是分辨率(两个物体之间的最小可分辨距离),NA是显微镜数值孔径的总称,λ是成像波长,NA(obj)等于物镜数值孔径,NA(cond)是聚光镜数值孔径。注意,方程(1)和(2)由所述乘法因子,这是0.5方程不同(1)和0.61方程(2)。这些方程式基于许多因素(包括光学物理学家所做的各种理论计算)来说明物镜和聚光镜的行为,因此不应视为任何一项一般物理定律的绝对值。在某些情况下,例如共聚焦和荧光显微镜,分辨率实际上可能超过了这三个方程式中的任何一个所设定的极限。其他因素,例如较低的样品对比度和不适当的照明,可能会降低分辨率,并且往往会降低r的实际最大值(使用550纳米的中光谱波长,约为0.25 μm),并且数值孔径为在实践中无法实现1.35至1.40。下表(表1)提供了一个列表的分辨率(ř)和数值孔径(NA)值进行物镜放大和校正。
当显微镜完全对准并且物镜与次级聚光镜适当匹配时,我们可以将物镜的数值孔径代入方程式(1)和(2),将方程式(3)简化为方程式(2)。要注意的一个重要事实是,在任何这些方程式中,放大率都不是一个因素,因为只有数值孔径和照明光的波长才能确定样品的分辨率。
正如我们已经提到的(在等式中可以看到的),光的波长是显微镜分辨率的重要因素。较短的波长产生较高的分辨率(r的较低值),反之亦然。光学显微镜中最大的分辨力是通过近紫外光实现的,这是最短的有效成像波长。近紫外光之后是蓝色,然后是绿色,最后是红色,可以分辨出样品的细节。在大多数情况下,显微学家使用钨卤素灯泡产生的白光照亮样品。可见光谱的中心位于约550纳米,这是绿光的主要波长(我们的眼睛对绿光最敏感)。表1中就是用来计算分辨率值的波长。数值孔径值在这些方程式中也很重要,数值孔径越高,分辨率也越高。在固定数值孔径(0.95)下,光波长对分辨率的影响;
显微镜的分辨能力是光学系统的最重要特征,并且会影响区分特定样本精细细节的能力。如上所述,确定分辨率的主要因素是物镜的数值孔径,但是分辨率还取决于样本的类型,照明的相干性,像差校正的程度