【没发表过的创新点】【多变量输入单步预测】基于CEEMDAN-VMD双分解-CNNbiLSTM的风电功率预测研究(Matlab代码实现)

                                        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

创新点:CEEMDAN_VMD双分解与CNN_BiLSTM融合的多变量输入单步预测模型

1. CEEMDAN_VMD双分解策略的创新应用

2. CNN与BiLSTM的深度融合

3. 多变量输入与单步预测的结合

4. 模型的整体架构与优化

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在“基于CEEMDAN_VMD双分解_CNN_BiLSTM的风电功率预测研究”中,若探讨一个尚未发表的创新点,可以聚焦于如何将CEEMDAN与VMD的双分解策略与CNN(卷积神经网络)和BiLSTM(双向长短期记忆网络)有效结合,以处理多变量输入并实现单步预测。以下是对这一创新点的详细阐述:

创新点:CEEMDAN_VMD双分解与CNN_BiLSTM融合的多变量输入单步预测模型

1. CEEMDAN_VMD双分解策略的创新应用
  • 双分解的优势:传统的单一分解方法(如EEMD、VMD)在处理复杂时间序列时可能面临模态混叠或分解不充分的问题。本研究创新性地将CEEMDAN(自适应噪声完备集合经验模态分解)与VMD(变分模态分解)相结合,形成双分解策略。CEEMDAN通过添加自适应噪声解决了EMD的模态混叠问题,而VMD则能进一步细化高频分量的特征,提高分解的精度和深度。

  • 多变量适应性:该双分解策略不仅适用于风电功率时间序列,还能有效处理与之相关的多变量气象数据(如风速、风向、温度、湿度等)。通过分别对这些变量进行双分解,可以揭示它们在不同频率尺度上的动态变化及其与风电功率之间的潜在关系。

2. CNN与BiLSTM的深度融合
  • CNN的特征提取能力:CNN擅长于从原始数据中自动提取高层次的特征表示,包括空间和时间上的局部特征。在本研究中,CNN被用于处理经过双分解后的多变量数据,提取各变量及其分解分量中的关键特征。

  • BiLSTM的时序建模能力:BiLSTM作为一种强大的时间序列分析工具,能够同时捕捉数据中的正向和反向依赖关系,从而更全面地理解时间序列的动态变化。在风电功率预测中,BiLSTM能够利用CNN提取的特征,建立风电功率与多变量气象因素之间的复杂非线性关系,实现高精度的单步预测。

3. 多变量输入与单步预测的结合
  • 多变量输入的重要性:风电功率的波动受多种气象因素的影响,因此多变量输入是提高预测精度的关键。本研究通过引入风速、风向、温度、湿度等气象因素作为输入变量,充分利用它们与风电功率之间的相关性和互补性,提高模型的预测能力。

  • 单步预测的优势:相比于多步预测,单步预测具有更低的复杂度和更高的实时性。本研究采用单步预测策略,即根据当前和历史的输入变量预测未来某一时刻的风电功率。这种策略有助于减少误差累积,提高预测的准确性和可靠性。

4. 模型的整体架构与优化
  • 整体架构:本研究提出的模型由CEEMDAN_VMD双分解模块、CNN特征提取模块和BiLSTM时序建模模块组成。各模块之间通过数据流动和参数优化实现无缝衔接,共同构成一个高效、准确的风电功率预测系统。

  • 优化策略:为了进一步提高模型的预测性能,本研究将采用多种优化策略,包括超参数调优、正则化技术、早停法等。同时,还将利用交叉验证等方法评估模型的泛化能力,确保模型在不同场景下的稳定性和可靠性。

综上所述,本研究提出的基于CEEMDAN_VMD双分解_CNN_BiLSTM的多变量输入单步预测风电功率预测模型,在理论上具有创新性,在实际应用中具有潜在的价值和广阔的前景。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值