【船舶】无人艇的LOS运动学动力学模型及其参数Matlab仿真

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 无人艇作为一种新型的水上平台,近年来在军事和民用领域得到了广泛的应用。本文以无人艇的LOS (Line-of-Sight) 运动控制为研究对象,建立了无人艇的LOS运动学动力学模型,并利用Matlab软件对模型进行了仿真分析,探讨了不同参数对无人艇运动轨迹的影响。

关键词: 无人艇;LOS运动控制;运动学动力学模型;Matlab仿真

一、引言

无人艇因其灵活性和可操控性,在海洋监测、水下作业、目标跟踪等领域展现出巨大潜力。为了实现无人艇的精确控制,需要建立其运动模型,并对其运动规律进行分析。其中,LOS运动控制是指将目标的视线方向作为无人艇的航向参考,通过控制无人艇的运动来跟踪目标,是一种常见的无人艇控制策略。

二、LOS运动学动力学模型

2.1 运动学模型

根据无人艇的运动特性,可以建立其运动学模型。以无人艇的速度和航向角为状态变量,其运动学模型可表示为:

[ẋ(t)] = [u(t)cos(ψ(t))]
[ẏ(t)] = [u(t)sin(ψ(t))]
[ψ̇(t)] = [r(t)]

其中,x(t)、y(t)分别代表无人艇在世界坐标系中的x坐标和y坐标,ψ(t)为无人艇的航向角,u(t)为无人艇的速度,r(t)为无人艇的角速度。

2.2 动力学模型

无人艇的动力学模型主要描述了其受到的外力和力矩与其运动状态之间的关系。常见的一种动力学模型可表示为:

[M] [ü(t)] + [C(u(t))] [u(t)] + [D(u(t))] [u(t)] = [τ(t)]

其中,[M]为质量矩阵,[C(u(t))]为科氏力和向心力矩阵,[D(u(t))]为阻尼力矩阵,[τ(t)]为作用于无人艇的力矩向量。

2.3 LOS控制策略

LOS控制策略通常采用比例-微分 (PD) 控制或比例-积分-微分 (PID) 控制。以PD控制为例,其控制律可表示为:

δ(t) = K_p * e(t) + K_d * ė(t)

其中,δ(t)为舵角,e(t)为航向误差,K_p和K_d分别为比例系数和微分系数。

三、Matlab仿真

利用Matlab软件对无人艇的LOS运动控制系统进行仿真,可以分析不同参数对无人艇运动轨迹的影响。

3.1 模型参数

根据无人艇的实际参数和模型假设,设置以下仿真参数:

  • 质量矩阵:[M]

  • 科氏力和向心力矩阵:[C(u(t))]

  • 阻尼力矩阵:[D(u(t))]

  • 控制参数:K_p,K_d

3.2 仿真结果

通过对不同控制参数的设置,仿真得到不同参数下无人艇的运动轨迹。

3.3 结果分析

分析不同参数对无人艇运动轨迹的影响,可以得出以下结论:

  • 比例系数K_p影响无人艇的收敛速度和稳定性,K_p越大,收敛速度越快,但振荡也越大。

  • 微分系数K_d影响无人艇的抗干扰能力,K_d越大,抗干扰能力越强,但收敛速度会减慢。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
### 四轮小车MPC控制仿真的实现 对于四轮小车模型预测控制(MPC)的仿真,在MATLAB环境中可以通过定义车辆动力学模型并应用Model Predictive Control Toolbox来完成。此过程涉及建立精确的小车动态方程以及设定控制器参数。 #### 定义车辆运动学模型 为了简化计算,通常采用自行车模型近似表示四轮汽车的动力学特性[^1]: \[ \dot{x} = v\cos(\psi+\beta) \\ \dot{y} = v\sin(\psi+\beta) \\ \dot{\psi} = \frac{v}{l_r}\sin(\beta) \\ \dot{v} = a \\ \tan(\beta)=\frac{l_r\tan(\delta)}{l_f+l_r} \] 其中 \(x\) 和 \(y\) 是位置坐标;\(ψ\) 表示航向角;\(β\) 代表侧偏角;\(v\) 为速度;\(a\) 加速度;而 \(δ\) 则指转向角度。这里假设前后轴距分别为 \(l_f\) 和 \(l_r\)。 ```matlab % Parameters setup lf = 1.0; % front wheelbase length (m) lr = 1.5; % rear wheelbase length (m) % Define state-space model for linearized vehicle dynamics around straight-line motion. A = [0, 1, 0; 0, 0, v/lr*cos(beta); 0, 0, 0]; B = [0; tan(delta)/lr*(v/(lf+lr)); 0]; sys = ss(A,B,[1 0 0],[0]); ``` #### 设计MPC控制器 基于上述线性化状态空间表达式创建MPC对象,并配置预测范围、控制间隔以及其他必要的性能指标权重矩阵Q和R: ```matlab Ts = 0.1; % Sampling time (s) p = 20; % Prediction horizon steps m = 3; % Control move suppression factor mpcobj = mpc(sys,Ts,p,m); % Set weights on outputs and manipulated variables setweights(mpcobj,'MVWeight',diag([0.1])); setweights(mpcobj,'OWeight',eye(3)); % Add constraints if necessary mpcobj.MV.Min = [-pi/6]; % Minimum steering angle limit (-30 degrees) mpcobj.MV.Max = [ pi/6]; % Maximum steering angle limit (+30 degrees) ``` #### 运行仿真测试 最后一步是在Simulink中构建完整的闭环控制系统结构图,连接自定义设计好的MPC模块与其他组件如传感器输入、执行器输出等部分。通过调整初始条件或外部扰动项来进行不同场景下的响应分析。 ```matlab sim('Your_Simulink_Model') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值