✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 无人艇作为一种新型的水上平台,近年来在军事和民用领域得到了广泛的应用。本文以无人艇的LOS (Line-of-Sight) 运动控制为研究对象,建立了无人艇的LOS运动学动力学模型,并利用Matlab软件对模型进行了仿真分析,探讨了不同参数对无人艇运动轨迹的影响。
关键词: 无人艇;LOS运动控制;运动学动力学模型;Matlab仿真
一、引言
无人艇因其灵活性和可操控性,在海洋监测、水下作业、目标跟踪等领域展现出巨大潜力。为了实现无人艇的精确控制,需要建立其运动模型,并对其运动规律进行分析。其中,LOS运动控制是指将目标的视线方向作为无人艇的航向参考,通过控制无人艇的运动来跟踪目标,是一种常见的无人艇控制策略。
二、LOS运动学动力学模型
2.1 运动学模型
根据无人艇的运动特性,可以建立其运动学模型。以无人艇的速度和航向角为状态变量,其运动学模型可表示为:
[ẋ(t)] = [u(t)cos(ψ(t))]
[ẏ(t)] = [u(t)sin(ψ(t))]
[ψ̇(t)] = [r(t)]
其中,x(t)、y(t)分别代表无人艇在世界坐标系中的x坐标和y坐标,ψ(t)为无人艇的航向角,u(t)为无人艇的速度,r(t)为无人艇的角速度。
2.2 动力学模型
无人艇的动力学模型主要描述了其受到的外力和力矩与其运动状态之间的关系。常见的一种动力学模型可表示为:
[M] [ü(t)] + [C(u(t))] [u(t)] + [D(u(t))] [u(t)] = [τ(t)]
其中,[M]为质量矩阵,[C(u(t))]为科氏力和向心力矩阵,[D(u(t))]为阻尼力矩阵,[τ(t)]为作用于无人艇的力矩向量。
2.3 LOS控制策略
LOS控制策略通常采用比例-微分 (PD) 控制或比例-积分-微分 (PID) 控制。以PD控制为例,其控制律可表示为:
δ(t) = K_p * e(t) + K_d * ė(t)
其中,δ(t)为舵角,e(t)为航向误差,K_p和K_d分别为比例系数和微分系数。
三、Matlab仿真
利用Matlab软件对无人艇的LOS运动控制系统进行仿真,可以分析不同参数对无人艇运动轨迹的影响。
3.1 模型参数
根据无人艇的实际参数和模型假设,设置以下仿真参数:
-
质量矩阵:[M]
-
科氏力和向心力矩阵:[C(u(t))]
-
阻尼力矩阵:[D(u(t))]
-
控制参数:K_p,K_d
3.2 仿真结果
通过对不同控制参数的设置,仿真得到不同参数下无人艇的运动轨迹。
3.3 结果分析
分析不同参数对无人艇运动轨迹的影响,可以得出以下结论:
-
比例系数K_p影响无人艇的收敛速度和稳定性,K_p越大,收敛速度越快,但振荡也越大。
-
微分系数K_d影响无人艇的抗干扰能力,K_d越大,抗干扰能力越强,但收敛速度会减慢。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类